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Abstract
We study a class of three dimensional continuous phase coexistence models, and
show that, under different symmetry assumptions on the potential, the large-scale
behaviour of such models near a bifurcation point is described by the dynamical Φp

3

models for p ∈ {2, 3, 4}. This result is specific to space dimension 3 and does not
hold in dimension 2.
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1 Introduction

The aim of this article is to study the large scale behavior of phase coexistence models
of the type

∂tu = ∆u− εV ′θ (u) + δξ̂ , (1.1)

in three spatial dimensions, where Vθ denotes a potential depending on some parameter
θ and ε, δ are two small parameters. Throughout this article, ξ̂ is assumed to be a
continuous space-time Gaussian random field modelling the local fluctuations, with
covariance having compact support and integrating to 1. The potential (θ, u) 7→ Vθ(u)
is a sufficiently regular function (depending on the regime, we will actually assume
that it is polynomial in u). Regarding the two parameters ε and δ, we will consider
two extremal regimes: either ε = o(1), δ ≈ 1, which we call the weakly nonlinear
regime, or δ = o(1), ε ≈ 1, which we call the weak noise regime. However, our results
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would easily carry over to intermediate regimes as well. Also, the spatial domain of
the process u is a large three dimensional torus whose size depends on ε (see Remark
1.2 for more details).

For the sake of the present discussion, consider the weakly nonlinear regime, i.e.
set δ = 1 in (1.1). It is then natural to consider scalings of the type uλ(t, x) =
λ−1/2u(tλ−2, xλ−1) which leave invariant the stochastic heat equation, so that uεα
satisfies

∂tuεα = ∆uεα − ε1−5α/2V ′θ (εα/2uεα) + ξεα , (1.2)

where ξε̄ denotes a suitable rescaling of ξ̂ which approximates space-time white noise
at scales larger than ε̄.

Remark 1.1. Since the process u in (1.1) itself depends on ε, one should really write
uε,εα for the rescaled process in (1.2) to avoid ambiguity. However, we still write the
ambiguous one uεα here in order to keep the notations simple.

The form (1.2) suggests that if we start (1.1) with an initial condition located at a
local minimum of V , then at scales of order ε−1/2 (i.e. setting α = 1

2
in (1.2)) solutions

should be well approximated by solutions to an Ornstein-Uhlenbeck process of the
type

∂tv = ∆v − cv + ξ , (1.3)

for some c > 0 and ξ a space-time white noise. As we will see in Theorem 5.2 below,
this is in general false, unless V is harmonic to start with. Instead, one should compute
from Vθ an effective potential 〈Vθ〉 in the following way. Consider the space-time
stationary solution Ψ to the linearised equation

∂tΨ = ∆Ψ + ξ̂ . (1.4)

Since we are in dimension 3, such a solution exists and is Gaussian with finite variance
C0. We then set

〈Vθ〉(x) =

∫
R
Vθ(x+ y)µ(dy),

where µ = N (0, C0). In other words, 〈Vθ〉 is the effective potential obtained by
averaging V against the stationary measure of Ψ. We show in Theorem 5.2 that if we
start with an initial condition located at a local minimum of 〈Vθ〉, then it is indeed the
case that the behaviour at scales of order ε−1/2 is described by (1.3).

These considerations suggest that more interesting nonlinear scaling limits can
arise in regimes where θ 7→ 〈Vθ〉 undergoes a bifurcation, and this is the main object
of study of this article. In particular, if 〈Vθ〉 is symmetric and undergoes a pitchfork
bifurcation at some θ = θ0, then one would expect the large-scale behaviour to be
described near θ0 by the dynamical Φ4

3 model built in [Hai14b] and further investigated
in [CC13, Kup15]. Similarly, near a saddle-node bifurcation, one would expect the
large-scale behaviour to be described by the dynamical Φ3

3 model built in [EJS13] using
the techniques developed in [DPD02, DPD03].

Recall that, at least formally, the dynamical Φp
3 model is given by

∂tΦ = ∆Φ− Φp−1 + ξ, (1.5)
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where ξ is the space-time white noise, and the spatial variable belongs to the three-
dimensional torus T3. In this article, we will only ever consider p ∈ {2, 3, 4}, with
p = 2 corresponding to the Ornstein-Uhlenbeck process (1.3). For p ∈ {3, 4}, the
interpretation of (1.5) is not clear a priori since solutions are distribution-valued so that
the term Φp−1 lacks a canonical interpretation. However, they can be constructed as
limits of solutions to

∂tΦε = ∆Φε − Φp−1
ε + CεΦ

p−3
ε + ξε , (1.6)

for a regularisation ξε of space-time white noise and a suitable diverging sequence of
constants Cε. In the case p = 3, this turns the term Φ2 into the Wick product :Φ2: with
respect to the Gaussian structure induced by the stationary solution to the corresponding
linearised equation (see [EJS13] for more details). In the case p = 4, the situation is
more delicate and additional logarithmic divergencies arise due to higher order effects,
see [GJ73, Fel74, Hai14b].

At this stage, it is important to note that the notation (1.5), even when interpreted as
limit of processes of the type (1.6), is really an abuse of notation: since one could always
change the value of Cε in (1.6) by a finite quantity, one actually has a one-parameter
family of solutions indexed by that finite quantity, and we call the resulting family
of solutions Φp

3 family. Let us point out that, without the presence of the diverging
counterterm Cε, the sequence Φε for p = 4 would converge to 0 in a sufficiently weak
topology depending on the dimension d (see [HRW12] for more details).

Formally, the equilibrium measure of the dynamics (1.5) for p = 4 is the measure
on Schwartz distributions associated to Bosonic Euclidean quantum field theory. This
can also be justified rigorously, see [HM15]. The construction of this measure was a
major achievement of constructive field theory; see the articles [EO71, Fel74, FO76,
GJ73, Gli68] and references therein. In two spatial dimensions, the equation (1.5) was
treated in [AR91, DPD03, MW15]. For d ≥ 4, one does not expect to be able to obtain
any non-trivial scaling limit, see [Frö82, Aiz82, BBS14].

Another reason why the dynamical Φ4
3 is interesting is that it is expected to de-

scribe the 3D Ising model with Glauber dynamics and Kac interactions near critical
temperature (as conjectured in [GLP99]). In fact, the one dimensional version of this
result was shown in [BPRS93] at the critical temperature. The two dimensional case is
more difficult, as the equation itself requires renormalisation. It was shown recently in
[MW14] that the 2D Kac-Ising model does rescale to Φ4

2 near critical temperature, and
the renormalisation constant has a nice interpretation as the shift of critical tempera-
ture from its mean field value. See also the article [GS73] which however required a
two-step procedure to obtain Φ4

2 from an Ising model.
We now turn back to the rescaled process (1.2). As suggested by the form of

renormalisation in (1.6), it is reasonable to expect that the behaviour of uε at scale
α = 1 and θ at (or near) a pitchfork bifurcation should be well approximated by
the dynamical Φ4

3 model. However, it turns out that this is not true in full generality.
The main result of this article is that, although uε converges to Φ4

3 for all symmetric
polynomial potentials, for generic asymmetric potentials, after proper re-centering and
rescaling, the large scale behaviour of the system will always be described either by
Φ3

3 or by the O.U. process of the type (1.3). One way to understand this is that, as is
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well-known from dynamical systems, pitchfork bifurcations are structurally unstable:
small generic perturbations tend to turn them into a saddle-node bifurcation taking
place very close to a local minimum. One can then argue (this is quite clear in Wilson’s
renormalisation group picture which has recently been applied to the construction of
the dynamical Φ4

3 model in [Kup15]) that the effective potential experienced by the
process at large scale is not 〈Vθ〉 but some small perturbation thereof, thus reconciling
our results with intuition.

1.1 Weakly nonlinear regime
We start with the weakly nonlinear regime given by

∂tu = ∆u− εV ′θ (u) + ξ̂, (1.7)

where we assume that Vθ is a polynomial whose coefficients depend smoothly on θ.
Defining 〈Vθ〉 as above, we thus write

〈V ′θ 〉(u) =
m∑
j=0

âj(θ)uj ,

for some smooth functions âj . For notational simplicity, we let âj, â′j and â′′j denote
the value and first two derivatives of âj(θ) at 0. We will always assume that 〈Vθ〉 has a
critical point at the origin (which could easily be enforced by just translating u), so that
â0 = 0.

Remark 1.2. From now on, we will always assume that (1.7) is considered on a
periodic domain of the relevant size. In particular, we define uεα directly as the solution
to (1.2) on a domain of sizeO(1) (the precise size is irrelevant, but it should be bounded
and no longer depend on ε). Ideally, one would like to extend the convergence results
of this article to all of R3, which would be much more canonical, but this requires some
control at infinity which is lacking at present.

Remark 1.3. In principle, the noise ξ̂ appearing in (1.7) also depends on ε, since it is
defined on a torus of size ε−α for some α > 0 depending on the regime we consider.
However, since we assume that its correlation function is fixed (independent of ε)
and has compact support, the noises on domains of different sizes agree in law when
considered on an identical patch, as long as a suitable fattening of that patch remains
simply connected.

In the simplest case when â1 6= 0, it is not very difficult to show that at scale α = 1
2
,

uεα converges in probability to the O.U. process. Interesting phenomena occur when
(0, 0) is a bifurcation point for 〈Vθ〉, which gives the necessary bifurcation condition

â0 = â1 = 0 . (1.8)

The saddle-node bifurcation further requires that â′0 6= 0 and â2 6= 0, and in this case
one should choose α = 2

3
so that as long as θ = O(ε

2
3 ), the macroscopic process

uεα converges to Φ3
3 family. In fact, the terms in V ′θ (εα/2uεα) in (1.2) are Hermite

polynomials in uεα whose coefficients are precisely âj(θ)’s with corresponding powers
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of ε. Thus, the Wick renormalisation is already taken account of, and this is the reason
why the bifurcation assumption naturally appears for 〈Vθ〉 but not Vθ.

The most interesting case arises when (0, 0) is a pitchfork bifurcation point of 〈Vθ〉
so that in addition to (1.8), one has

â′0 = 0, â′1 < 0, â2 = 0, â3 > 0 . (1.9)

As mentioned above, from (1.6), it is natural to expect that at scale α = 1, and with a
suitable choice of θ, the processes uεα should converge to the solution of the Φ4

3 model.
As already alluded to earlier, this turn out to be true if and only if the quantity

A =

∫
P (z) E(V ′0(Ψ(0))V ′′0 (Ψ(z)))dz (1.10)

vanishes, where P is the heat kernel, z denotes the space time variable (t, x), and the
expectation is taken with respect to the stationary measure of Ψ as defined in (1.4). For
general V0, this integral diverges since the heat kernel P is not integrable at large scales.
It turns out however that this expression is finite provided that

â0â1 = â2 = 0 ,

which is certainly the case when 〈Vθ〉 has a pitchfork bifurcation at the origin. The
quantity A can be written in terms of the coefficients of 〈V 〉 as

A =
m−1∑
j=3

(j + 1)! · âj âj+1Cj, (1.11)

where theCj (to be defined in Section 4 below) are explicit constants depending only on
the covariance of ξ̂. It is clear from this expression that A vanishes if V is symmetric.

If A 6= 0 then, in order to obtain a nontrivial limit, it is necessary to slightly shift
the potential from the origin, so we set

uεα(t, x) = ε−
α
2 (u(t/ε2α, x/εα)− hε) , (1.12)

for some small hε. The process uεα above then satisfies the equation

∂tuεα = ∆uεα − ε1−5α/2V ′θ (εα/2uεα + hε) + ξεα . (1.13)

From now on, in both weakly nonlinear and weak noise regimes, we will use uεα to
denote the re-centred process, and the process in (1.2) is a special case of (1.13) when
h = 0.

If one then takes θ ∼ εβ for some β < 2
3
, then there are three different choices of

hε’s such that the shifted process uεα converges to O.U. for α = 1+β
2

. As expected,
two of the possible limiting O.U. processes are stable, and the third one is unstable. If
θ ∼ εβ for some β > 2

3
on the other hand, then there is a unique choice of hε such that

at scale α = 5
6
, the process uεα converges to a stable O.U. process.

At the critical case θ = cε
2
3 , there is a constant c∗ such that for c > c∗ and c < c∗,

at scale α = 5
6
, uεα either converges to three O.U.’s or just one O.U., respectively. At
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c = c∗, there are two possible choices of hε. One of them again yields a stable O.U.
process at scale 5

6
in the limit, but the other one yields Φ3

3 at scale α = 8
9
. Note that this

scale is much larger than the scale 2
3

at which one obtains Φ3
3 in the case of a simple

saddle-node bifurcation. We summarise them in the following theorem.

Theorem 1.4. Let 〈Vθ〉 have a pitchfork bifurcation at the origin, and let uεα be the
solution to (1.2) on [0, T ]× T3.

If the quantity A given by (1.10) is 0, then there exists µ < 0 such that at the
distance to criticality

θ = µε| log ε|+ λε+O(ε2),

scale α = 1 and h = 0, the process uε converges to the Φ4
3 family indexed by λ.

If A 6= 0, then the large scale behaviour of uαε depends on the value

θ = ρεβ, ρ > 0.

In fact, there exists ρ∗ > 0 such that if β < 2
3
, or if β = 2

3
and ρ > ρ∗, then there exist

three choices of hε’s such that at scale α = 1+β
2

, two of the resulting processes uεα
converge to a stable OU process, and the other converges to an unstable one.

If β > 2
3
, or if β = 2

3
and ρ < ρ∗, then there exists a choice of hε such that at scale

α = 5
6
, the process uεα converges to a stable OU process.

At the critical value β = 2
3

and ρ = ρ∗, there exist two choices of hε such that one
of the resulting processes converges to a stable OU process at scale α = 5

6
, and the

other converges to Φ3
3 at scale α = 8

9
.

Remark 1.5. The coefficient of the Wick term :u2: in the critical Φ3
3 case is propor-

tional to A
1
3 . If A = 0, then the process becomes a free field, and one can then further

enlarge the scale to 1, and adjust θ and h to get Φ4
3.

Also, the coefficient of the term Φp−1 in the limiting equation depends on various
coefficients of 〈V0〉, but we can rescale them while leaving invariant the white noise
such that they all become 1.

Remark 1.6. In the asymmetric case (A 6= 0), one can actually expand θ to the
second order such that in the branch containing the saddle point, the scale increases
continuously from 0 up to 8

9
with respect to θ (see Remark 5.5). Similar results also

hold in the symmetric case, but this is not important here, so we omit the details.

All these results will be formulated precisely in Section 5 below.

1.2 Weak noise regime
There is another regime of microscopic models in which the nonlinear dynamics
dominates the noise. The local mean field fluctuation is given by the equation

∂tu = ∆u− V ′θ (u) + ε
1
2 ξ̂, (1.14)

where Vθ is a potential with sufficient regularity, not necessarily a polynomial. More
precisely, we assume V : θ 7→ Vθ(·) is a smooth function in the space of C8 functions.
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Thus, we can Taylor expand V ′θ around x = 0 as

V ′θ (x) =
6∑
j=0

aj(θ)xj + Fθ(x), (1.15)

where aj’s are smooth functions in θ, and |Fθ(x)| . |x|7 uniformly over |θ| < 1 and
|x| < 1.

Since the noise now has strength of order ε
1
2 , the large scale behaviour of (1.14) is

determined by the behaviour of Vθ itself near the origin, and not by that of an effective
potential. Again, in order to observe an interesting limit, we assume that V has a
pitchfork bifurcation at (0, 0), namely one has

a0 = a′0 = a1 = a2 = 0, a′1 < 0, a3 > 0, (1.16)

where the aj(θ) are the coefficients of the Taylor series of V ′θ (φ) around φ = 0. For
λ > 0, we set similarly to before

uλ(t, x) = λ−1(u(tλ−2, xλ−1)− hε) ,

where hε is a small parameter as before. By setting λ = εα, we see that this time uεα
solves the PDE

∂tuεα = ∆uεα − ε−( 1
2

+ 5α
2

)V ′θ (ε
1
2

+α
2 uεα + hε) + ξεα . (1.17)

While this appears to be identical to (1.2) modulo the substitution α 7→ α + 1, it
genuinely differs from it in that the driving noise still has correlation length εα and not
εα+1. In order for uεα to converge to Φ4

3, it then seems natural to choose α = 1, thus
guaranteeing that the coefficient of the cubic term in the Taylor expansion of V ′θ is of
order 1. But this creates the divergences in both linear and constant terms on the right
hand side of the equation. Since a0 = a1 = 0, and we have two parameters θ and h to
tune, it looks like that we could kill the divergences by choosing the proper values of θ
and h and get Φ4

3 in the limit.
Unfortunately, this turns out to be impossible. When tuning θ to its correct value to

kill the linear divergence, the terms involving the leading order of h will be precisely
be canceled out so that h could only have a second order effect, which is far from
enough to kill the divergence in the constant term. Thus, one cannot make both linear
and constant terms convergent unless the coefficients of V itself are balanced. It turns
out that similar to before, whether uε converges to Φ4

3 depends on the quantity

B = a4 +
3a′′0a

2
3

2a′21
− a′2a3

a′1
.

The main statement is the following.

Theorem 1.7. Assume V : θ 7→ Vθ(·) is a smooth function in the space of C8 functions,
and exhibits a pitchfork bifurcation at the origin (θ, x) = (0, 0). Let uεα solves the PDE
(1.17).
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If B = 0, then there exist choices of θ and h of the form

θ = aε+ bε2 log ε+O(ε2) , h = O(ε) ,

such that uεα converges to Φ4
3(a3) with an additional constant in the equation.

If B 6= 0, then there exist ρ∗j > 0 for j = 1, 2, 3 such that if

θ = θ∗ = ρ∗1ε+ ρ∗2ε
4
3 + ρ∗3ε

5
3 +O(ε

16
9 ),

then there exist two choices of hε such that one of the resulting processes uεα converges
to Φ3

3 at scale α = 7
9
, and the other one converges to a stable OU process at α = 2

3
.

If θ > θ∗ (resp. θ < θ∗), then there exist three (resp. one) choices of hε such that the
resulting uεα converge to OU processes. In the former case, two of the OU processes
are stable and the last one is unstable; in the latter case the OU process is stable.

Remark 1.8. Similar to the weakly nonlinear case, the coefficient of the Wick term
for Φ3

3 is proportional to B
1
3 . Also, one could rescale the solution leaving invariant the

white noise such that all the limits are of the form (1.5).

The precise statement will be given in Theorems 5.8 and 5.10.

1.3 Some remarks and structure of the article
Before describing the structure of this article, we discuss two possible natural generali-
sations of our results.

1. We expect that analogous results still hold when the noise ξ̂ is not assumed to
be Gaussian, but still satisfies good enough integrability and mixing conditions.
The techniques developed in [HS15] should apply here as well. Note however
that if the noise is asymmetric, then we do not expect to see Φ4

3 at large scales
generically, even if Vθ is symmetric.

2. The assumption that Vθ is a polynomial can probably be relaxed. It is however
not clear at all at this stage how the methods in this article could be carried over
to handle this case.

It turns out that, as in [HQ15], the weak noise regime can be treated as a perturbation
of the weakly nonlinear regime, so we will mainly focus on the latter case. The main
strategy to prove the above results is the recently developed theory of regularity
structures ([Hai14b]), combined with the results of ([HQ15]), where results analogous
to ours are obtained for the KPZ equation. The idea is to lift and solve (1.2) in an
abstract regularity structure space that is purposed built for this equation, and then pull
the solution back to the usual distribution spaces after suitable renormalisation.

The article is organised as follows. In Section 2, we construct the regularity
structure as well as the renormalisation maps that allow us to treat the equations of the
form (1.2). Section 3 is devoted to construction of the solution to the abstract equation.
In Section 4, we prove the convergence of the renormalised models. Finally, in Section
5, we collect all the previous results to identify the limit of the renormalised solutions.
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2 Construction of the regularity structure

In this section, we build a regularity structure that is sufficiently rich to solve the fixed
point problem for the equation

∂tuε = ∆uε − ε−
3
2V ′θ (ε

1
2uε) + ξε (2.1)

in the abstract space of modelled distributions. Here, ξε is a mollified version of the
space-time white noise ξ at scale ε, and V ′θ is a polynomial of degree m. Note that (2.1)
corresponds to the weakly nonlinear regime with scale α = 1, and we do not restrict V
to be symmetric here. Since this is the largest scale we will look at, all other situations
(including the weak noise regime) will follow as a perturbation of the above equation.

The construction of the regularity structure mainly follows the methodologies and
set up in [Hai14b] and [HQ15], with some slight modifications to accommodate the
particular form of the equation (2.1). More gentle introductions to regularity structures
can be found in [Hai15a], [Hai15b], [Hai14a] and [CW15].

2.1 The (extended) regularity structure
Recall that a regularity structure is a pair (T ,G), where T =

⊕
α∈A Tα is a vector space

that is graded by some (bounded below, locally finite) set A ⊂ R of homogeneities,
and G is a group of linear transformations of T such that, for every Γ ∈ G, Γ− id is
strictly upper triangular with respect to the graded structure.

For the purpose of this article, we build basis vectors T similarly to [HQ15] as a
collection of formal expressions built from the symbols 1, Ξ, {Xi}3

i=0 and operators
I and Eβ for half integers β > 0. As usual, we assume that all symbols and sub-
expressions commute and that 1 is neutral for the product, so we identify for example
I(ΞX1)Ξ and Ξ1I(X1Ξ). Given a multi-index k = (k0, · · · , k3), we also write Xk as
a shorthand for Xk0

0 · · ·Xk3
3 (with the convention X0

i = 1), and |k| = 2k0 +
∑3

i=1 ki
for its parabolic degree.

With these notations, we define two sets U and V of such expressions as the smallest
sets such that Xk ∈ U , Ξ ∈ V , and such that for every k ∈ {1, . . . ,m− 3},

{τ1, · · · , τk} ⊂ U ⇒ {τ1τ2τ3 , E
k
2 (τ1 · · · τk+3)} ⊂ V ,

τ ∈ V ⇒ I(τ ) ∈ U .
(2.2)

We then setW = U ∪ V and we associate to each element ofW a homogeneity in the
following way. We set

|Ξ| = −5

2
− κ, |Xk| = |k| ,

where κ is a small positive number to be fixed later, and we extend this to every formal
expression inW by

|τ τ̄ | = |τ |+ |τ̄ |, |I(τ )| = |τ |+ 2, |Eβ(τ )| = β + |τ | . (2.3)
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We then write Tα for the free vector space generated by {τ ∈ W : |τ | = α}. In this
article, we will only ever use basis vectors with homogeneity less than 2, we therefore
take for T the space of all finite linear combinations of elements ofW of homogeneity
less than 2, i.e. T =

⊕
α<2 Tα.

The main reason for introducing Eβ as in (2.2) rather than treating ε as a fixed real
number is the following crucial fact. It reflects that (2.1) is subcritical under the scaling
reflected by our regularity structure.

Lemma 2.1. If κ < 1
8m

, then for every γ > 0, the set {τ ∈ W : |τ | < γ} is finite.

As in [HQ15], it will be convenient to consider Eβ as a linear map such that
Eβ : τ 7→ Eβ(τ ). The problem is that the product τ1 · · · τ`+3 appearing in (2.2) does in
general not belong to T . Just as in [HQ15], one way to circumvent this problem is to
introduce the extended regularity structure Tex, given by the linear span of

Wex =W ∪ {τ1 · · · τm : τj ∈ U}.

In this way, we can view Eβ as a linear map defined on (a subspace of) Tex.
We now start to describe the structure group G for Tex. For this, we introduce the

following three sets of formal symbols:

F1 = {1, X}, F2 = {J`(τ ) : τ ∈ W \ {Xk}, |τ |+ 2 > `},

F3 = {E
k
2
` (τ1 · · · τk+3) : τj ∈ U ,

k

2
+
∑
j

|τj| > |`| ≥
∑
j

|τj|} . (2.4)

We then let T+ be the commutative algebra generated by the elements in F1 ∪ F2 ∪ F3

and we define a linear map ∆ : T → T ⊗ T+ in the same way as in [HQ15, Section
3.1].

For any linear functional g : T+ → R, one obtains a linear map Γg : T → T by
Γgτ = (id⊗g)∆τ . Denoting by G+ the set of multiplicative linear functionals g on T+,
we then set

G+ = {g ∈ T ∗+ : g(τ τ̄ ) = g(τ )g(τ̄ ), ∀τ, τ̄ ∈ T+} ,

and we define G by
G = {Γg : g ∈ G+} . (2.5)

It is straightforward to verify that G has the desired properties, including the fact that
its elements respect the product structure of T in the sense that Γ(τ τ̄ ) = Γτ · Γτ̄ .
Furthermore, G preserves not only Tex, but also T , so that it also serves as the structure
group for T .

2.2 Admissible models
We now start to introduce a class of admissible models for our regularity structure. As
in [Hai14b], we fix a truncation K of the heat kernel which coincides with it near the
origin and annihilates polynomials of degree up to 3. The existence of such a kernel K
is easy to show, and can be found, for example, in [Hai14b, Sec. 5.1].
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We let D′ denote the space of Schwartz distributions on R1+3 and L(T ,D′) the
space of linear maps from T to D′. Furthermore, for any test function ϕ : R1+3 → R,
any z ∈ R1+3 and λ ∈ R+, we use ϕλz to denote ϕλz (z′) = λ−5ϕ((t′−t)λ−2, (x′−x)λ−1).
We also write B for the set of smooth functions ϕ : R4 → R that are compactly
supported in {|z| ≤ 1} whose derivatives up to order three (including the value of the
function) are uniformly bounded by 1.

Recall that a model for (T ,G) consists of a pair (Π, F ) of functions

Π : R1+3 → L(T ,D′) F : R1+3 → G
z 7→ Πz z 7→ Fz

satisfying the identity
ΠzF

−1
z = Πz̄F

−1
z̄ , ∀z, z̄, (2.6)

as well as the bounds

|(Πzτ )(ϕλz )| . λ|τ |, |Γz,z̄τ |σ . |z − z̄||τ |−|σ| (2.7)

uniformly over all ϕ ∈ B, all space-time points z, z̄ in compact domains and every
τ ∈ W , where we used the shorthand Γz,z̄ = F−1

z ◦Fz̄, and the proportionality constant
depends on the compact domain K. We will write fz for the element in G+ such that
Fz = Γfz . We will give explicit expressions for fz, and will write the notation (Π, f )
for a model frequently. We also write |τ |σ for the norm of the component of τ in Tσ (the
precise choice of norm does not matter since these spaces are all finite-dimensional).
We define the norm of a model M = (Π, f ) to be the smallest constant that makes both
bounds in (2.7) to hold, and denote it by |||M|||K. Since in most of the situations, F is
completely determined by Π, we sometimes also write |||Π||| instead of |||M|||, and we
omit the domain K wherever no confusion may arise. With these notations, we can
define what we mean by an admissible model.

Definition 2.2. A model (Π, f ) is admissible if for every multi-index k, one has

(ΠzX
k)(z̄) = (z̄ − z)k, fz(Xk) = (−z)k (2.8)

and for every τ ∈ W with I(τ ) ∈ T , one has

fz(J`τ ) = −
∫
D`K(z − z̄)(Πzτ )(dz̄), |`| < |τ |+ 2

ΠzI(τ )(z̄) = (K ∗ Πzτ )(z̄) +
∑
`

(z̄ − z)`

`!
· fz(J`τ ).

(2.9)

Here, we set J`τ = 0 if |`| ≥ |τ |+ 2, so the sum is always finite.

See [Hai14b] for the correct way of interpreting these identities in case Πz contains
distributions that are not functions.
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2.3 Canonical lift to Tex

Given any smooth space-time function ξ̂ and any real number ε, there is a canonical
way to build an admissible model Lε(ξ̂) = (Πε, f ε) for the regularity structure (Tex,G)
as follows. We first set

(Πε
zΞ)(z̄) = ξ̂(z̄),

independent of ε and the base point z. We then define Πε
zτ recursively for other τ ∈ W

by (2.9) as well as the identities

(Πε
zτ τ̄ )(z̄) = (Πε

zτ )(z̄) · (Πε
z τ̄ )(z̄) (2.10)

and

f εz (E β
` τ ) = −εβ(D`(Πε

zτ ))(z),

(ΠzEβτ )(z̄) = εβ(Πε
zτ )(z̄) +

∑
`

(z̄ − z)`

`!
· f εz (E β

` τ ).
(2.11)

Here, we again adopt the convention E β
` (τ ) = 0 if |`| ≥ β + |τ |. This construction

makes sense only when Πzτ is sufficiently regular, and this is indeed the case if ξ̂ is
smooth. We then have the following fact, the proof of which can be found in [HQ15].

Proposition 2.3. Let ξ̂ be a smooth space-time function, and ε ≥ 0. Then, the canonical
model Lε(ξ̂) = (Πε, f ε) defined via the identities (2.8) – (2.11) is an admissible model.

Later on, we will consider the situation where ξ̂ = ξε, a regularised version of the
space-time white noise ξ, so we are led to the canonical model Lε(ξε). However, it
is important to note that at this stage nothing forces the values of the two ε’s to be
identical: it is perfectly legitimate to consider the model Lε(ξδ) for any pair of (ε, δ).

Also, one would like the linear map Eβ to represent the multiplication by εβ . This
is however not quite true in view of (2.11), and it suggests that we should introduce a
new map Êβ on the Dγ space of modelled distributions (see Section 3 in [Hai14b] for a
definition) by

(ÊβU )(z) = EβU (z)−
∑
`

X`

`!
fz(E

β
` (U (z))). (2.12)

Then, as long as the model is admissible and satisfies (2.11), the map Êβ does indeed
represent multiplication by εβ in the sense thatRÊβU = εβRU forR the reconstruction
operator.

2.4 Renormalisation
The aim of this section is to build a group R of transformations that we can use to
“renormalise” our models. It is crucial for our purpose that such a renormalisation
procedure satisfies the following three properties:

1. R acts on the space M of admissible models.
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2. R is sufficiently rich so that one can find elements Mε ∈ R such that MεLε(ξε)
converges to a limit in M , where Lε denotes the “canonical lift” of the regu-
larised noise ξε.

3. Solving the fixed point problem (3.1) for a model of the type MLε(η) for a
smooth space-time function η and M ∈ R leads to the solution of a modified
PDE.

The transformationsM ∈ R we consider here will be composed by two linear maps
M0 and MWick on Tex. The map MWick encodes “Wick renormalisation”, while M0 has
the interpretation as mass renormalisation in the quantum field theory. From now on,
we will use the shorthand Ψ = I(Ξ). We start with the standard Wick renormalisation
map MWick on Tex. Define the generator LWick by

LWickΞ = LWickXk = 0, LWickΨk =

(
k
2

)
Ψk−2,

and extend this to the whole of Tex by

LWick(τI(τ̄ )) = LWick(τ )I(τ̄ ) + τI(LWickτ̄ ) ,

for τ̄ 6= Ξ, as well as

LWickI(τ ) = I(LWickτ ), LWick(Eβτ ) = Eβ(LWickτ ), LWick(Xkτ ) = XkLWickτ .

The map MWick : Tex → Tex is then defined by

MWick = exp(−C1L
Wick) . (2.13)

The definition of LWick ensures that MWick commutes with Xk as well as with the abstract
integration maps I and Eβ . MWick has the interpretation as Wick renormalisation in the
sense that

MWickΨk = C
k
2
1 Hk(Ψ/

√
C1) =: Hk(Ψ;C1) , (2.14)

where Hk(·) is the k-th Hermite polynomial whose leading order coefficient is nor-
malised to 1. For example, we have

H1(Ψ;C1) = Ψ, H2(Ψ;C1) = Ψ2 − C1, H3(Ψ;C1) = Ψ3 − 3C1Ψ.

Note that although we will always consider the case whereC1 ≥ 0, the above expression
Hk(Ψ;C1) actually does not require C1 to be positive.

We now describe the effect of MWick on the canonical model (Π, f ). Following
[Hai14b, HQ15], for the map MWick defined above, there is a unique pair of linear maps

∆Wick : Tex → Tex ⊗ T+, M̂Wick : T+ → T+

satisfying

M̂WickJ` =M(J` ⊗ id)∆Wick,

M̂WickE β
` =M(E β

` ⊗ id)∆Wick,

(id⊗M)(∆⊗ id)∆Wick = (MWick ⊗ M̂Wick)∆,

M̂Wick(τ1τ2) = (M̂Wickτ1)(M̂Wickτ2), M̂WickXk = Xk,

(2.15)
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whereM : T+ → T+ denotes the multiplication in the Hopf algebra T+. As in [HQ15,
Sec. 5], one can verify that both M̂Wick and ∆Wick have the relevant triangular structure,
so that if, given an admissible model (Π, f ), we define (ΠWick, fWick) by

ΠWick
z τ = (Πz ⊗ fz)∆Wickτ, fWick

z (σ) = fz(M̂Wickσ) , (2.16)

then (ΠWick, fWick) is again an admissible model. Furthermore, as a consequence of the
second identity in (2.15) and the fact that MWick commutes with Eβ, if (Π, f ) satisfies
(2.11) for some ε, then so does (ΠWick, fWick).

We now turn to describing the map M0. For n ≥ 2, we define linear maps Ln and
L′n on Tex by setting

Ln : E
n
2
−1(ΨnI(E

n
2
−1Ψn)) 7→ n! · 1,

E
n
2
−1(ΨnI(E

n
2
−1Ψn+1)) 7→ (n+ 1)! ·Ψ,

E
n
2
− 1

2 (ΨnI(E
n
2
− 3

2 Ψn)) 7→ n! · 1, n ≥ 3,

E
n
2
− 1

2 (Ψn+1I(E
n
2
− 3

2 Ψn)) 7→ (n+ 1)! ·Ψ, n ≥ 3,

L′n : E
n
2
−1(ΨnI(E

n
2
− 3

2 Ψn)) 7→ n! · 1, n ≥ 3,

(we use the convention E0 = id) and Lnτ = 0, L′nτ = 0 for any other basis vector
τ ∈ W . Given these maps, we then consider maps on Tex of the form

M0 := exp

(
−
∑
n≥2

CnLn −
∑
n≥2

C ′nL
′
n

)
.

As we will see in (3.15), at the level of abstract equation, M0 has the simple effect of
adding a linear term to the right hand side of the equation. Actually, M0 is equivalently
given by

M0 = id−
∑
n≥2

CnLn −
∑
n≥2

C ′nL
′
n .

Furthermore, it commutes with G in the sense that M0Γτ = ΓM0τ for any τ ∈ T and
Γ ∈ G. As a consequence, given an admissible model (Π̄, f̄ ), if we set

Π̄M0
z τ := Π̄zM0τ, f̄M0

z σ = f̄z(σ) , (2.17)

then (Π̄M0 , f̄M0) is also an admissible model. Given M = (M0,M
Wick) with M0 and

MWick as above, we then define the renormalised model (ΠM , fM ) by

ΠM
z τ = (Πz ⊗ fz)∆Wick(M0τ ), fMz (σ) = fWick

z (M̂Wickσ). (2.18)

Remark 2.4. Note that although in many cases one has (ΠM
z τ )(z) = (ΠzMτ )(z), this

is in general not true. For example, for τ = EΨ4, we have (ΠM
z τ )(z) = ε(ξ̂4(z) −

6C1ξ̂
2(z) + 3C2

1), while (ΠzMτ )(z) = ε(ξ̂4(z)− 6C1ξ̂
2(z)).
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3 Abstract fixed point problem

In this section, we translate (1.2) into a fixed point problem in a suitable space of
modelled distributions. It is natural to consider the fixed point problem

Φ = P1+

(
Ξ−

m∑
j=4

λjQ≤0Ê
j−3
2 (Q≤0(Φj))−

3∑
j=0

λjQ≤0(Φj)
)

+ P̂ u0, (3.1)

where Q≤α denote the projection onto the subspace
⊕

β≤α Tβ in Tex, P̂ u0 is the canon-
ical lift of the solution to the deterministic heat equation with initial data u0 to the
regularity structure, and P denotes the operator given by

P = K + R̂R,

where K is the abstract integration operator defined from the truncated heat kernel K
as in [Hai14b, Sec.4],R is the reconstruction operator, and R̂u is the Taylor expansion
of the smooth function (P −K) ∗ u up to order γ.

To solve such a fixed point problem, at first glance, it seems that one can simply
follow the procedure in [Hai14b, Sec. 7] to obtain a unique solution to (3.1) in a
space Dγ,η as in [Hai14b, Sec. 6] for suitable γ and η. Unfortunately, as in [HQ15],
this argument only works for sufficiently regular initial data (it needs to be “almost
continuous” for large values of m). Since the dynamical Φ4

3 model only has regularity
Cη for η < −1

2
, this would prevent us from using a continuation argument to control the

convergence of our models on any fixed time interval. In addition, such a continuation
argument also requires one to be able to evaluate the reconstructed solutionRΦ in a
suitable space of distributions at any fixed time. However, as one can easily see, the
solution to (3.1) contains the term Ψ = I(Ξ) which has negative homogeneity, and a
priori there is no clear way to give meaning toRΨ at any fixed time t. The second issue
is not a serious problem here since, for the natural model constructed from space-time
white noise,RΨ can indeed be regarded as a continuous function (in time) in a suitable
space of distributions. (See for example [Hai14b, EJS13].)

To resolve the first issue, we introduce ε-dependent norms to enforce suitable
control on both our admissible models and the initial condition as ε→ 0. In a way, this
allows us to “trade” the singularities near t = 0 and at small scales for powers of ε.

In what comes below, we will mainly follow [HQ15] to build such weighted spaces.
It turns out that the algebraic structure of these spaces are essentially the same as
those in introduced in [HQ15], except that the values of γ and η are different. We will
therefore mostly give statements and refer to [HQ15] for detailed proofs.

3.1 The ε-dependent spaces and models
Below, we use ϕ to denote a space-time test function belonging to B, φ to denote such
a test function that furthermore integrates to 0, and ψ to denote a test function that
annihilates affine functions of the spatial variables.

Recall that our definition of an admissible model in the previous section does not
specify any relationship between its actions on τ and Eβ(τ ). In order to formulate the
cancellation of the singularity in time by the small parameter ε in the limiting process
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ε→ 0, we introduce the space of models Mε which consists of all admissible models
(Π, f ) with the further restriction that

|fz(E β
` (τ ))| . εβ−|`|+|τ |, τ ∈ W , (3.2)

|〈Πzτ, ψ
λ
z 〉| . λζ · ε|τ |−ζ , τ ∈ U , ζ =

6

5
.

Here, all the bounds are to hold uniformly over all space-time points z in compact sets,
all λ ∈ (0, ε) and all test functions ψ ∈ B that annihilate affine functions. We also
require that, for some sufficiently large η < −1

2
(to be fixed below),

sup
t∈[0,1]

‖Π0Ψ(t, ·)‖Cη < +∞.

We will verify later in Section 5 that the models considered in this article do indeed
belong to Mε with uniform controls as ε→ 0.

We let ‖Π‖ε denote the smallest proportionality constant for both bounds in (3.2),
and define a “norm” on Mε by

|||Π|||ε := |||Π|||+ ‖Π‖ε + sup
t∈[0,1]

‖Π0Ψ(t, ·)‖Cη ,

where |||Π||| is the usual “norm” on admissible models introduced in Section 2.2. Again,
these norms all depend on the compact set K where the supremum of z is taken over,
which we have omitted for notational simplicity.

Remark 3.1. This is of course an abuse of notation since |||Π||| and ‖Π‖ε both depend
not only on Π but also on F , and F can in general not be recovered uniquely from Π
and the knowledge that the model is admissible (unlike in the situations considered
in [Hai14b]). We chose to nevertheless keep this notation for the sake of conciseness.
Also, the norm |||Π|||ε depends not only on ε but also on η. Since we will fix the value
η < −1

2
below, we omit η in the notation.

We compare two models in Mε by

|||Π; Π̄|||ε = |||Π; Π̄|||+ ‖Π− Π̄‖ε + sup
t∈[0,1]

‖Π0Ψ(t, ·)− Π̄0Ψ(t, ·)‖Cη .

We also denote by M0 the class of admissible models such that fz(E
β
` (τ )) ≡ 0. It is

natural to compare two elements (Π(ε),Γ(ε)) ∈Mε and (Π,Γ) ∈M0 by

|||Π(ε); Π|||ε;0 = |||Π(ε); Π|||+ ‖Π(ε)‖ε + sup
t∈[0,1]

‖Π(ε)
0 Ψ(t, ·)− Π0Ψ(t, ·)‖Cη .

Note that Mε and Mε′ consists of exactly the same class of models for each ε, ε′ > 0,
but with different scales on their norms. The point here is that we will consider models
with |||Π(ε); Π|||ε;0 → 0 for some limiting model Π. We first give a useful lemma.

Lemma 3.2. There exists C > 0 such that, for Π ∈Mε and τ ∈ U , we have

|〈Πzτ, ϕ
λ
z 〉| < C‖Π‖εε|τ | , |〈Πzτ, φ

λ
z 〉| < C‖Π‖ελε|τ |−1 , (3.3)

uniformly over all λ < ε < 1, all space-time points z in compact sets and all test
functions ϕ, φ ∈ B with the further restriction that φ integrates to 0.
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Proof. We first prove the second bound. Let φ be a test function integrating to 0, let
λ ∈ (0, 1], and let N be the integer such that

λ · 2N ≤ ε < λ · 2N+1. (3.4)

We then write φλz as a telescope sum by

φλz =
N−1∑
k=0

(2−kφλ·2
k

z − 2−(k+1)φλ·2
k+1

z ) + 2−N · φλ·2Nz =:
N−1∑
k=0

δφλ,kz + 2−N · φλ·2Nz .

For each k appearing in this sum, δφλ,kz is localised at scale λ · 2k < ε and integrates to
0 since the function φ does. Furthermore, the factor 2−k is chosen such that the integral
of 2−kφλ·2

k

z against linear functions does not depend on k, so that δφλ,kz annihilates all
affine functions. Thus, we can use the second bound in (3.2) to deduce that for each k,
we have

|〈Πzτ, δφ
λ,k
z 〉| < C‖Π‖ε2−k(λ2k)ζ · ε|τ |−ζ .

Summing over k from 0 to N − 1, and using the fact that ζ > 1 and λ · 2N ∼ ε, we
conclude that

∑N−1
k=0 〈Πzτ, δφ

λ,k
z 〉 < C‖Π‖ελε|τ |−1. The same bound holds for the term

2−N · φλ·2Nz as a direct consequence of (2.7), so we obtain the second bound in (3.3).
To prove the first one, fix a test function ϕ, and write it as

ϕλz =
N−1∑
k=0

(ϕλ·2
k

z − ϕλ·2k+1

z ) + ϕλ·2
N

z . (3.5)

This time, each function in the parenthesis integrates to 0 so we can use the second
bound just proved above, and the first one follows easily.

We now turn to dealing with the irregularity of the initial data. At this point, our
definitions start to differ from those in [HQ15] in order to encode the regularities of
terms in (3.1). We first introduce a new space for the initial condition u0.

Definition 3.3. Let γ ∈ (1, 2), η < 0 and ε > 0. The space Cγ,ηε consists of Cγ functions
f : R3 → R with norm

‖f‖γ,η;ε = ‖f (ε)‖Cη + ε−η‖f (ε)‖∞ + εγ−η sup
|x−y|<ε

|Df (ε)(x)−Df (ε)(y)|
|x− y|γ−1

. (3.6)

Furthermore, we set Cγ,η0 = Cη. The distance between two elements f (ε) ∈ Cγ,ηε and
f ∈ Cη is defined by

‖f (ε); f‖γ,η;ε = ‖f (ε)−f‖Cη + ε−η‖f (ε)‖∞+ εγ−η sup
|x−y|<ε

|Df (ε)(x)−Df (ε)(y)|
|x− y|γ−1

. (3.7)

The reason we do not include a bound on ‖Df (ε)‖∞ on the right hand side is that
such a bound follows the bounds on ‖f (ε)‖∞ and ‖Df (ε)‖Cγ−1 . More precisely, one has
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Lemma 3.4. There exists a constant C such that, for every f (ε) ∈ Cγ,ηε one has

‖Df (ε)‖∞ < C‖f (ε)‖γ,η;ε · εη−1 . (3.8)

Proof. The proof is straightforward and we leave it as an exercise.

One should think of functions in Cγ,ηε as behaving like elements of Cη at large scales,
while being of class Cγ at small scales, with ε determining where the cutoff between
“small” and “large” lies. The reason why only f (ε) appears in the last two terms of (3.7)
is that these two quantities are not even finite for general f ∈ Cη.

Following [HQ15, Sec. 3.5], we define Dγ,η space to be the set of functions U
taking values in T with norm

‖U‖γ,η := sup
z

sup
|τ |<γ
|U (z)|τ + sup

z
sup
|τ |<γ

|U (z)|τ√
|t|(η−|τ |)∧0

+ sup
|z−z′|<

√
|t|∧|t′|

sup
|τ |<γ

|U (z)− Γz,z′U (z′)|τ
|z − z′|γ−|τ |

√
|t| ∧ |t′|η−γ

.

Note that this definition is slightly different from the original one in [Hai14b] in the
sense that it allows U (z) to have components in T≥γ . We now introduce the weighted
spaces Dγ,ηε that are suitable for our fixed point problem.

Definition 3.5. For each ε, γ, η, and each model (Π,Γ) ∈Mε, the space Dγ,ηε consists
of modelled distributions U with norm given by

‖U‖γ,η;ε = ‖U‖γ,η + sup
z

sup
τ

|U (z)|τ
ε(η−|τ |)∧0

+ sup
(z,z′)∈Dε

sup
|τ |<γ

|U (z)− Γz,z′U (z′)|τ
|z − z′|γ−|τ |εη−γ

.

Here, the supremum is taken over all space-time points (z, z′) ∈ Dε, defined by

Dε = {(z, z′) : |z − z′| < ε ∧
√
|t| ∧ |t′|} ,

where z = (t, x), z′ = (t′, x′), and ‖ · ‖γ,η is the norm of the usual Dγ,η spaces
introduced in [Hai14b, Sec. 6].

In short, the above definition says that modelled distributions U in Dγ,ηε satisfy the
bounds

|U (z)|τ . (ε+
√
|t|)(η−|τ |)∧0,

|U (z)− Γz,z′U (z′)|τ . |z − z′|γ−|τ |(ε+
√
|t| ∧ |t′|)η−γ.

Note thatDγ,ηε is a linear space once the model is fixed, and so the distance between two
elements can be simply compared by ‖U − Ū‖γ,η;ε. Also, in all the cases we consider
below, η is always smaller than the regularity of the sector in consideration. Thus, we
will have η < |τ |, and can simply replace (η − |τ |) ∧ 0 by η − |τ | in all the situations
below. Similar as before, we compare two elements U (ε) ∈ Dγ,ηε and U ∈ Dγ,η by

‖U (ε);U‖γ,η;ε = ‖U (ε);U‖γ,η + sup
z

sup
τ

|U (ε)(z)|τ
ε(η−|τ |)∧0

+ sup
(z,z′)∈Dε

sup
|τ |<γ

|U (ε)(z)− Γz,z′U
(ε)(z′)|

|z − z′|γ−|τ |εη−γ
.



ABSTRACT FIXED POINT PROBLEM 19

The reason why only U (ε) appears on the latter two terms on the right hand side above
is the same as before: these quantities are in general not finite for U ∈ Dγ,η. The main
motivation for the introduction of these ε-dependent spaces is that they contain the
solution to the heat equation with initial condition in Cγ,ηε , with bounds independent of
ε. This is the content of the following proposition, the proof of which is identical to
that of [HQ15, Prop. 4.7], so we do not repeat the details here.

Proposition 3.6. Let η < 0, γ ∈ (1, 2), ε ∈ (0, 1], and u ∈ Cγ,ηε . Let P̂ u denote the
canonical lift of the harmonic extension of u via its truncated Taylor expansion of order
γ. Then, P̂ u ∈ Dγ,ηε and one has

‖P̂ u‖γ,η;ε < C‖u‖γ,η;ε.

Furthermore, if u(ε) ∈ Cγ,ηε and u ∈ Cη, then one has

‖P̂ u(ε); P̂ u‖γ,η;ε < C‖u(ε);u‖γ,η;ε.

The following proposition will be needed later when we continue local solutions up
to their (potential) explosion time. It says that the initial data of the restarted solution
still belongs to the Cγ,ηε space with norms uniform in ε.

Proposition 3.7. Let γ ∈ (1, 6
5
), and η ∈ (− m+1

2m+1
,−1

2
). Let (Πε, f ε) ∈ Mε. Let

U be a sector of the regularity structure as defined in (2.2). If Rε is the associated
reconstruction map for Dγ,ηε (U) and U (ε) ∈ Dγ,ηε (U) is the abstract solution to (3.1),
then for every t > 0, u(ε)

t := RεU (ε)(t, ·) belongs to Cγ,ηε with

‖u(ε)
t ‖γ,η;ε < C‖U (ε)‖γ,η;ε|||Π(ε)|||ε.

If (Π, f ) is another such model with reconstruction operatorR, and U ∈ Dγ,η solves
(3.1) based on Π, then ut := RU (t, ·) belongs to Cη and one has

‖u(ε)
t ;ut‖γ,η;ε . ‖U (ε);U‖γ,η;ε(|||Π|||+ |||Πε|||ε) + |||Πε; Π|||ε,0(‖U (ε)‖γ,η;ε + ‖U‖γ,η) .

Proof. We first prove the first claim of the proposition. For that, we bound separately
the three terms appearing in the definition (3.6) of the spaces Cγ,ηε . We first notice that
any solution U (ε) to (3.1) is necessarily of the form

U (ε)(z) = Ψ + V (ε)(z) .

Since the structure group acts trivially on Ψ, the constant function Ψ belongs to all
spacesDγ,ηε , so that if U (ε) ∈ Dγ,ηε , then so does V (ε). Since, in the above decomposition,
V (ε)(z) belongs to the linear span of {1} ∪ {τ : |τ | > 0}, the desired bound for
‖RεV (t, ·)‖Cη follows from [Hai14b, Prop. 3.28]. Regarding the term Ψ, one has
RεΨ = Πε

0Ψ so that, by the definition of Mε, we have

sup
t∈[0,1]

‖(RεΨ)(t, ·)‖Cη < C|||Πε|||ε,

and the required bound for ‖u(ε)
t ‖Cη thus follows.
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For the remaining two terms on the right hand side of (3.6), we will prove a stronger
bound by showing u(ε) = RεU (ε) is a space-time function with desired regularity, rather
just being a function in space for fixed time.

For the second term, since the lowest homogeneity in U is −1
2
− κ, an application

of the reconstruction theorem together with Lemma 3.2 gives

sup
λ<ε

sup
z

sup
ϕ∈B
|〈u(ε), ϕλz 〉| < C‖U (ε)‖γ,η;ε|||Πε|||ε · ε−

1
2
−κ.

On the other hand, it follows directly from the definition of a model that

sup
λ≥ε

sup
z

sup
ϕ∈B

λ
1
2

+κ|〈u(ε), ϕλz 〉| < C‖U (ε)‖γ,η;ε|||Πε|||ε.

Combining the above two bounds and using the fact that κ is arbitrarily small so that
η < −1

2
− κ, we conclude that u(ε) is a continuous function with

ε−η‖u(ε)‖∞ < Cε−η−
1
2
−κ · ‖U (ε)‖γ,η;ε|||Πε|||ε.

We now turn to the third term on the right hand side of (3.6). In order to show
Du(ε) ∈ Cγ−1, we test it against test functions that integrate to 0. Using the definition
of the distributional derivative and then the triangle inequality, we get

λ1−γ|〈Du(ε), φλz 〉| ≤ λ−γ|〈Πε
zU

(ε)(z), (Dφ)λz 〉|+ λ−γ|〈u(ε) − Πε
zU

(ε)(z), (Dφ)λz 〉|.

It follows from the reconstruction theorem that the second term on the right hand side
above is uniformly bounded by a constant. For the first term, since the assumption that
φ integrates to 0 implies Dφ annihilates affine functions, we can use the second bound
in (3.2) to obtain

λ−γ|〈Πε
zU

(ε)(z), (Dφ)λz 〉| < C‖U (ε)‖γ,η;ε|||Πε|||ε · λζ−γε−
1
2
−κ−ζ ,

where we again used the fact that the lowest homogeneity in U is −1
2
− κ. The desired

bound then follows immediately.
For the second claim, the only problematic term is ‖u(ε)

t ;ut‖Cη , but again the desired
bound for this term follows in the same way as ‖u(ε)

t ‖Cη .

Before we proceed to further properties of the Dγ,ηε spaces, we first make a few
remarks about these spaces and our notation.

• The set Dε in Definition 3.5 is taken to be {|z − z′| < ε ∧
√
|t| ∧ |t′|}. This is

sufficient since for the pairs (z, z′) such that ε ≤ |z − z′| <
√
|t| ∧ |t′|, we have

ε +
√
|t| ∧ |t′| < 2

√
|t| ∧ |t′|, so the bound on the last term in Definition 3.5

follows automatically from the bound on ‖ · ‖γ,η.

• We use the notation ‖F − F̄‖γ,η;ε to compare two functions in the same Dγ,ηε
space with the same underlying model. On the other hand, whenever we write
‖F ; F̄‖γ,η;ε, it should be understood that we are comparing F ∈ Dγ,ηε with
F̄ ∈ Dγ,η, typically based on a different model. As we will never compare
two functions belonging to Dγ,ηε spaces with the same ε but different underlying
models, these notations are sufficient.
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It turns out that these spaces behave as expected under multiplication and action of
Êk and P . We state a few of the properties we will be using later; most of the proofs
can be found in [HQ15].

Proposition 3.8. Let Ui ∈ Dγi,ηiε (V (i)) for i = 1, 2, where V (1) and V (2) are sectors of
respective regularities α1 and α2. If

γ = (γ1 + α2) ∧ (γ2 + α1), η = (η1 + α2) ∧ (η2 + α1) ∧ (η1 + η2),

then their pointwise product U = U1U2 is in Dγ,ηε with

‖U‖γ,η;ε < C‖U1‖γ1,η1;ε‖U2‖γ2,η2;ε.

Furthermore, if Ūi ∈ Dγi,ηiε , then Ū = Ū1Ū2 ∈ Dγ,η with the same η, γ as above, and
we have

‖U ; Ū‖γ,η;ε < C(‖U1; Ū1‖γ,η;ε + ‖U2; Ū2‖γ,η;ε + ‖Γ− Γ̄‖),

where C is proportional to
∑

i(‖Ui‖+ ‖Ūi‖) + ‖Γ‖+ ‖Γ̄‖.

Proposition 3.9. Let U ∈ Dγ,ηε with η ≤ γ. If α ≥ γ, then Q≤αU ∈ Dγ,ηε with

‖Q≤αU‖γ,η;ε . ‖U‖γ,η;ε.

Proposition 3.10. Let U ∈ Dγ,ηε with γ ∈ (−β, 1− β). Then ÊβU ∈ Dγ′,η′ε with

γ′ = (γ + β) ∧ inf
|τ |<γ

(γ − |τ |), η′ = η + β,

and we have the bound

‖ÊβU‖γ′,η′;ε < C(1 + ‖Π‖ε)‖U‖γ,η;ε.

In addition, if Ū ∈ Dγ,η with model Π̄ ∈M0, we have

‖ÊβU ; ÊβŪ‖γ′,η′;ε < C(1 + ‖Π‖ε)(‖U ; Ū‖γ,η;ε + |||Π; Π̄|||ε;0)

with the same γ′ and η′.

Proposition 3.11. Let U ∈ Dγ,ηε (V ), where V is a sector of regularity α with −2 <
η < γ ∧ α. Then, provided that γ and η are not integers, we have PU ∈ Dγ̄,η̄ε with
γ̄ = γ + 2 and η̄ = η + 2, and we have the bound

‖PU‖γ̄,η̄;ε < C‖U‖γ,η;ε.

Furthermore, if Ū ∈ Dγ,η0 , then we also have

‖PU ;PŪ‖γ̄,η̄;ε < C(‖U ; Ū‖γ,η;ε + |||Π, Π̄|||ε).
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3.2 Solution to the fixed point problem and convergence
We now have all the ingredients in place to build our solution with uniform (in ε)
bounds in suitable Dγ,ηε spaces. The equation we consider is of a general form that it
sufficiently flexible to cover all the concrete cases to be considered later. We first show
the existence and uniqueness of local solutions.

Theorem 3.12. Let m ≥ 1, γ ∈ (1, 6
5
), η ∈ (− m+1

2m+1
,−1

2
), and κ > 0 be sufficiently

small. Let φ0 ∈ Cγ,ηε , and consider the equation

Φ = P1+

(
Ξ−

m∑
j=4

λjQ≤0Ê
j−3
2 (Q≤0Φj)−

3∑
j=0

λjQ≤0(Φj)
)

+ P̂ φ0. (3.9)

Then, for every sufficiently small ε and every model in Mε, there exists T > 0 such
that the equation (3.9) has a unique solution in Dγ,ηε up to time T . Moreover, T can be
chosen uniformly over any fixed bounded set of initial data in Cγ,ηε , any bounded set of
models in Mε, any bounded set of parameters λ(ε)

j , and all sufficiently small ε.
Let φ(ε)

0 be a sequence of elements in Cγ,ηε such that ‖φ(ε)
0 ;φ0‖γ,η;ε → 0 for some

φ0 ∈ Cη, Πε ∈Mε, Π ∈M0 be models such that |||Πε; Π|||ε;0 → 0, and let λ(ε)
j → λj for

each j. If Φ ∈ Dγ,η solves the fixed point problem (3.9)with model Π, initial data φ0

and coefficients λj up to time T , then for all small enough ε, there is a unique solution
Φ(ε) ∈ Dγ,ηε to (3.9) with Πε, φ(ε)

0 and λ(ε)
j up to the same time T , and we have

lim
ε→0
|||Φ(ε); Φ|||γ,η;ε → 0.

Proof. We first prove that the fixed point problem (3.9) can be solved in Dγ,ηε with
local existence time uniform in ε. LetM(ε)

T denote the map

M(ε)
T (Φ) = P1+

(
Ξ−

m∑
j=4

λjQ≤0Ê
j−3
2 (Q≤0Φj)−

3∑
j=0

λjQ≤0(Φj)
)

+ P̂ φ0. (3.10)

We will show that, for T sufficiently small,M(ε)
T is a contraction mapping a centered

ball in Dγ,ηε of a large enough radius Ω into a ball of radius Ω
2

. In what follows, we will
omit the subscript T and simply write the map asM(ε).

We first show thatM(ε) maps Dγ,ηε into itself. By Proposition 3.6, we have P̂ φ(ε)
0 ∈

Dγ,ηε . In addition, the noise term P1+Ξ also belongs to Dγ,ηε . As for the non-linearity,
if j ≤ 3, it is straightforward to see that Φj ∈ Dδ,3ηε for some positive δ. We can choose
δ small enough so that there is no basis vectors with homogeneity between 0 and 2δ,
and Proposition 3.9 implies thatQ≤0(Φj) = Q≤2δ(Φj) ∈ Dδ,3ηε . It is then an immediate
application of Proposition 3.11 to see that the map

Φ 7→ P1+

( 2∑
j=0

λjQ≤0(Φj)
)

is locally Lipschitz from Dγ,ηε into itself with a Lipschitz constant bounded by (T + ε)θ

for some positive θ.
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We now turn to the nonlinear term P1+(Q≤0Ê
j−3
2 Q≤0(Φj)) for j ≥ 4. Let

γj = γ − j − 1

2
− (j − 1)κ, ηj = jη, η̄j = jη +

j − 3

2
.

Then by Propositions 3.8 and 3.9, we have Q≤0(Φj) ∈ Dγj ,ηjε with

‖Q≤0(Φj)‖γj ,ηj ;ε < C‖Φ‖jγ,η;ε.

The assumption γ > 1 implies γj > − j−3
2

if κ is sufficiently small, so applying Proposi-
tion 3.10 with β = j−3

2
, we know that there exists δ > 0 such that Ê j−3

2 Q≤0(Φj) ∈ Dδ,η̄jε

with

‖Ê
j−3
2 Q≤0(Φj)‖δ,η̄j ;ε < C(1 + ‖Π‖ε)‖Φ‖jγ,η;ε.

Similar as before, we can again choose δ to be small enough so thatQ≤0Ê
j−3
2 Q≤0(Φj) =

Q≤2δÊ
j−3
2 Q≤0(Φj) also belongs to Dδ,η̄jε with the same bound. Since η̄j > −2, an

application of Proposition 3.11 implies that there exists θ > 0 such that

‖P1+Ê
j−3
2 (Q≤0(Φj))‖γ,η;ε < C(T + ε)θ(1 + ‖Π‖ε)‖Φ‖j+2

γ,η;ε.

This showsM(ε) indeed maps Dγ,ηε into itself. In particular, if Λ is big enough with

‖Φ‖γ,η;ε < Λ, ‖u(ε)
0 ‖γ,η;ε <

Λ

C
,

then we can choose T small enough depending on Λ, ‖Π‖ε and λ(ε)
j ’s only such that

‖M(ε)(Φ)‖γ,η;ε <
Λ

2
.

In order to show M(ε) is also a contraction for small T , we first note that since
there is only one model concerned in Mε, we can simply compare the difference
M(ε)(Φ)−M(ε)(Φ̃) for two elements Φ, Φ̃ ∈ Dγ,ηε . In fact, we have

M(ε)(Φ)−M(ε)(Φ̃) =−
m∑
j=4

j−1∑
k=0

λjP1+Q≤0Ê
j−3
2 Q≤0((Φ− Φ̃)Φj−1−kΦ̃k)

−Q≤0(Φ− Φ̃)(λ3(Φ2 + ΦΦ̃ + Φ̃2) + λ2(Φ + Φ̃) + λ1).

By linearity, Φ− Φ̃ ∈ Dγ,ηε , so all the bounds obtained above also apply forM(ε)(Φ)−
M(ε)(Φ̃) except that one power of ‖Φ‖γ,η;ε is replaced by ‖Φ− Φ̃‖γ,η;ε. Thus, we get

‖M(ε)(Φ)−M(ε)(Φ̃)‖γ,η;ε

< C(T + ε)θ‖Φ− Φ̃‖γ,η;ε(1 + ‖Π‖ε)(1 + ‖Φ‖γ,η;ε + ‖Φ̃‖γ,η;ε)m−1.

Again, if we restrict ourselves to centered balls with radius Λ in Dγ,ηε , then as soon as
we choose

(T + ε)θ <
1

C(1 + ‖Π‖ε)(1 + 2Λ)m−1
, (3.11)
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the mapM(ε) =M(ε)
T is a contraction and there is a unique solution to (3.9). This is

possible for all small ε. In addition, it is clear that if the coefficients λ(ε)
j ’s, the norms

‖Π‖ε and ‖u(ε)
0 ‖γ,η;ε are uniformly bounded as ε→ 0, then this short existence time T

could be chosen independent of ε provided ε is small enough.
We now turn to the second part of the theorem, namely the convergence of local

solutions Φ(ε) to Φ up to the time T when Φ is defined. By the arguments above, there
exists a time S < T such that (3.9) has a fixed point solution Φ(ε) in Dγ,ηε up to time S
for all small ε. We first show the convergence of Φ(ε) to Φ up to time S, and iterate the
relative bounds to get existence and convergence to time T .

LetM(ε) : Dγ,ηε → Dγ,ηε denote the map

M : Φ 7→ P1+

(
Ξ−

m∑
j=4

λ(ε)
j Q≤0Ê

j−3
2 (Q≤0(Φj))−

3∑
j=0

λ(ε)
j Q≤0(Φj)

)
+ P̂ φ(ε)

0 .

up to time S, andM : Dγ,η → Dγ,η be the map of the same form except that λ(ε)
j and

φ(ε)
0 are replaced by λj and φ0. Following the same line of argument as in the proof for

the first half, we have

‖M(ε)(Φ(ε));M(Φ)‖γ,η;ε

. (S + ε)θ‖Φ(ε); Φ‖γ,η;ε + sup
j
|λ(ε)
j − λj|+ |||Π(ε); Π|||ε,0 + ‖φ(ε)

0 ;φ0‖γ,η;ε,

where the proportionality constant depends on the norm of the relevant models, the
size of the ball in Dγ,ηε , the initial data and the coefficients. For small enough S, using
the knowledge that Φ(ε) and Φ are the fixed points in Dγ,ηε and Dγ,η0 respectively, we
easily get

‖Φ(ε); Φ‖γ,η;ε . sup
j
|λ(ε)
j − λj|+ |||Π(ε); Π|||ε,0 + ‖u(ε)

0 ;u0‖γ,η;ε. (3.12)

This gives the desired convergence of ‖Φ(ε); Φ‖γ,η;ε to 0 up to time S. We now need to
extend the solutions to time T , up to when the solution Φ to (3.9) is defined with model
Π ∈M0. It suffices to have bounds for R(ε)Φ(ε)(t, ·) and R(ε)Φ(ε)(t, ·)− (RΦ)(t, ·) in
Cγ,ηε so that we can restart the solution from time t. In fact, these are precisely what
we obtained in Proposition 3.7. Thus, one could iterate (3.12) up to time T , and this
completes the proof.

3.3 Renormalised equation
We now turn to studying the effect of the renormalisation maps defined in Section 2.4
on the solutions to the fixed point problem (3.9). For simplicity, we write

F :=
m∑
j=3

λjE
j−3
2 Ψj,

and, for n ≥ 1, we define the n-th ‘derivative’ of F to be

F (n) :=
m∑
j=3

j(j − 1) · · · (j − n+ 1)λjE
j−3
2 Ψj−n.
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If (Π̄, f̄ ) is an admissible model and γ ∈ (1, 6
5
), then the solution to the fixed point

problem (3.9) in Dγ,ηε necessarily has the form

Φ = Ψ + ϕ · 1− I(F)− λ2I(Ψ2)− ϕ · I(F ′) + ϕ′ ·X = Ψ + U, (3.13)

where U denotes the part that contains all basis vectors except Ψ. Therefore, the right
hand side of (3.9) (including all terms with homogeneities up to 0) can be written as

H(z) = Ξ−
m∑
j=4

λj Ê
j−3
2 Φj −

3∑
j=0

λjΦ
j (3.14)

= Ξ−F − λ2Ψ2 − ϕ · F ′ − 1

2
ϕ2 · F ′′ − (λ1 + 2ϕλ2)Ψ + F ′I(F)

+ λ2F ′I(Ψ2) + ϕ · F ′I(F ′) + ϕ · F ′′I(F) + 2λ2ΨI(F)− ϕ′F ′X − 1

6
ϕ3 · F ′′′

+

(
λ0 + λ1ϕ+ λ2ϕ

2 +
∑
j≥4

j∑
n=4

(
j
n

)
ϕnf z(E

j−3
2

0 (Ψj−nU (z)n))
)
· 1.

We then have the following theorem, the proof of which is essentially the same as that
in [HQ15, Sec. 5], so we omit the details here.

Theorem 3.13. Let φ0 ∈ C1, ε ≥ 0, and ξ̂ be a smooth space-time function. Let
(Π, f ) = Lε(ξ̂) be the canonical model as in Section 2, M = (M0,M

Wick), and
(ΠM , fM ) = MLε(ξ̂) be the renormalised model described in Section 2.4. If Φ ∈ Dγ,ηε
is the local solution to the fixed point problem (3.9) for the model (ΠM , fM ), then the
function u = RMΦ is the classical solution to the PDE

∂tu = ∆u−
m∑
j=4

λjε
j−3
2 Hj(u;C1)−

3∑
j=0

λjHj(u;C1)−(Cu+C ′+6λ2λ3C2)+ξ̂ (3.15)

with initial data φ0, and the constants C and C ′ are given by

C =
m−1∑
n=2

(n+ 1)2n! · λ2
n+1Cn +

m−2∑
n=3

(n+ 2)! · λnλn+2Cn ,

C ′ =
m−1∑
n=3

(n+ 1)! · λnλn+1C
′
n .

(3.16)

4 Convergence of the renormalised models

In this section, we will show how to choose the correct constants so that the action of the
renormalisation maps built in Section 2.4 on the canonical model yields convergence to
a limit, and we will also identify the limiting model. The identification of the limiting
equation will be given in Section 5.
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4.1 Main statement and convergence criterion
Let ξ denote space-time white noise on R × T3. Fix a smooth compactly supported
function ρ : R1+3 → R integrating to 1, and set

ρε(t, x) = ε−5ρ(t/ε2, x/ε), ξε = ρε ∗ ξ, (4.1)

where ‘∗’ denotes space-time convolution. Then, the correlation of ξε is

Eξε(s, x)ξε(t, y) =

∫
R

∫
T3

ρε(s− u, x− z)ρε(t− u, y − z)dzdu.

If the noise ξ̂ is obtained from the convolution of the space time white noise defined on
R× (ε−1T)3 with the mollifier ρ, then we actually have

ξε(t, x) law
= ε−

5
2 ξ̂(t/ε2, x/ε).

From now on, we will always assume that the noise ξε relates to ξ by (4.1). When we
consider scale α < 1 later, we simply replace ε by εα in that expression. We also let

Kε = K ∗ ρε, Gε = Kε ∗Kε,

where K coincides the heat kernel in {|z| < 1}, has compact support, and annihilates
polynomials up to degree 3, as introduced at the beginning of Section 2.2. We have the
following easy proposition.

Proposition 4.1. We have

D`Kε(z) . (|z|+ ε)−3−|`|, Gε(z) . (|z|+ ε)−1,

uniformly over all ε < 1 and space-time points z with |z| < 1.

Remark 4.2. Here, ` = (`0, `1, `2, `3) is a multi-index, and |`| = 2`0 +
∑3

i=1 `i reflects
the parabolic scaling. In what follows, we will always use the notation | · | to denote
the parabolic degree of such indices.

The main theorem of this section is the following.

Theorem 4.3. Let Mε ∈ R denote the renormalisation map

Mε =
(

exp (−
∑
n≥2

C (ε)
n Ln −

∑
n≥3

C ′(ε)n L′n), exp (− C (ε)
1 L1)

)
,

with Ln and L′n as in Section 2.4. Let Lε(ξε) be canonical lift of ξε to the regularity
structure T as in Section 2.3, and consider the sequence of models

Mε := MεLε(ξε) .

Then, there exists a choice of constants C (ε)
n , C ′(ε)n , and a random model M ∈M0 such

that
|||Mε;M|||ε,0 → 0

in probability as ε→ 0. Furthermore, the limiting model M = (Π̂, f̂ ) satisfies Π̂zτ = 0
for every z and every basis vector τ that contains an occurrence of Eβ for some β > 0.
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The readers may have already realised that with proper choices of C (ε)
1 and C (ε)

2 ,
the action of the model Mε on basis vectors without an appearance of E is exactly as
those in the regularised Φ4

3 equation (see [Hai14b, Section 10] for details). Thus, the
action of the limiting model M on those basis vectors is precisely the same as that of
the limiting Φ4

3 model.
However, the effect of the models Mε on symbols that contain E’s is more compli-

cated. In order to prove Theorem 4.3, we first give a useful criterion for the convergence
of models in Mε. The proof of this criterion is essentially the same as Propositions 6.2
and 6.3 in [HQ15], so we only give the statement without proofs.

Proposition 4.4. Let (T ,G) be the regularity structure given in Section 2, and consider
a family of random models (Π̂ε, f̂ ε) in Mε. Assume there exists θ > 0 such that for
every test function ϕ ∈ B, every τ ∈ W with |τ | < 0, every space-time point z and
every λ ∈ (0, 1), there exists a random variable (Π̂zτ )(ϕλz ) such that

E|(Π̂ε
zτ )(ϕλz )|2 . λ2|τ |+θ, E|(Π̂ε

zτ − Π̂zτ )(ϕλz )|2 . εθλ2|τ |+θ. (4.2)

Assume furthermore that for every Eβ(τ ) ∈ W with β + |τ | > 0, one has

E|D`f̂ εz (E β
0 τ )| . ε|τ |+β−|`|+θ (4.3)

for some positive θ, and that for any τ ∈ U , one has the bound

E|(Π̂ε
zτ )(ψλz )| . λζ+θε|τ |−ζ , ζ =

6

5
, (4.4)

for all test functions ψ ∈ B that annihilate affine functions, uniformly over λ ∈ (0, ε).
Then, there exists a random model (Π̂, f̂ ) ∈M0 such that |||Π̂ε, Π̂|||ε;0 → 0 in probability
as ε→ 0.

Remark 4.5. Later, we will consider (Π̂ε, f̂ ε) = MεLε(ξε) as in Theorem 4.3 with
proper renormalisation constants C (ε)

j ’s defined in the next subsection. It is straight-
forward to see that they indeed belong to Mε. For the limiting model M, its action
on basis vectors without any appearance of E is exactly the same as in the standard
Φ4

3 equation (in fact, these are precisely the terms that appears in Φ4
3). Its action on

terms containing a factor of Eβ will yield 0. Thus, in addition to (4.3), (4.4), it suffices
to prove the second bound in (4.2) for τ containing at least one factor of E , and with
Π̂zτ = 0.

4.2 Graphical notations and preliminary bounds
The remainder of this section is devoted to the proof that the random models MεLε(ξε)
as in Theorem 4.3 do indeed satisfy the convergence criterion of Proposition 4.4.
Since we are in a translation invariant setting, it suffices bound the random variables
(Π̂ε

0τ )(ϕλ0) for various basis vectors τ . All these random variables belong to some
finite order Wiener chaos. Following [HP14, HQ15], we use a graphical notation to
represent the kernels for homogeneous Wiener chaos of finite order. Each node in the
graph represents a space-time variable in R1+3: the special green node represents the
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origin, which is fixed, the nodes represent the arguments in the kernel representation
for homogeneous Wiener chaos, and the remaining nodes represent variables to be
integrated out.

Each plain arrow represents the kernel K(z′− z), where z and z′ are starting
and ending points of the arrow. A dotted arrow represents the kernel Kε with
the same orientation as before, and a bold green arrow represents a generic
test function in B rescaled by a factor λ. In addition, we use the barred arrow
to represent a factor K(z′ − z) − K(−z), where as before z and z′ denote starting
and ending points of the arrow. Finally, a double barred arrow represents the
factor K(z′ − z) − K(−z) − x′ · DK(−z), where z = (t, x), z′ = (t′, x′), and the
differentiation DK is with respect to space variable only.

With these notations, it follows for example that for τ = ΨI(Ψ3) and the canonical
model Πε = Lε(ξε), we have the expression

(Πε
0ΨI(Ψ3))(ϕλ0 ) = + 3 + 3 + 3 .

(4.5)
Here, the first term represents the component in the fourth homogeneous Wiener chaos
(see [Nua06, Ch.1.1.2]), the next two terms represent the component in the second
homogeneous chaos, and the last term is the component in the zeroth homogeneous
chaos. The variance of the first two terms above, for example, are bounded (up to some
constant multiple) by

+ . (4.6)

To bound this and similar quantities, it is convenient to label the edges of the graph to
reflect the singularity of the corresponding kernel, and to give a bound of the whole
object in terms of simple power counting of the labels. For this purpose, and in order
to be able to use the bounds obtained in [HQ15], we introduce labelled graphs to
represent bounds for quantities like E|(Π̂ε

0τ )(ϕλ0 )|2.
In a labelled graph, each edge e = (xv− , xv+) comes with a pair of numbers

(ae, re) ∈ R+ × Z, and the orientation of the edge really matters only if re > 0. As
before, edges e are associated to kernels Je, with ae measuring the singularity of the
kernel in question in the sense that we assume that each Je is compactly supported and
satisfies a bound of the type

|DkJe(z)| . |z|−ae−|k| , (4.7)

for every multiindex k. The precise factor represented by each edge then furthermore
depends on the value re. If re = 0, then the corresponding edge simply represents a
factor Ĵe(xv− , xv+) = Je(xv+ − xv−). We simply write ae instead of (ae, 0) in this case.
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If re > 0, then the corresponding edge represents a factor

Ĵe(xv− , xv+) = Je(xv+ − xv−)−
∑
|k|s<|re|

xkv+
k!
DkJe(−xv−). (4.8)

On the other hand, if re < 0, then the edge corresponds to a factor Ĵe(xv− , xv+) =
(RJe)(xv+ − xv−), where RJe denotes the renormalised distribution

(RJe)(ϕ) =

∫
Je(x)

(
ϕ(x)−

∑
|k|s<|re|

xk

k!
ϕ(0)

)
dx . (4.9)

Since we will always consider situations where no two edges with re < 0 meet and all
Je are smooth functions, the meaning of the factor (RJe)(xv+ − xv−) is unambiguous.

Unlike in [HQ15], each labelled graph does in our case represent a sequence of
multiple integrals depending on a parameter ε ∈ (0, 1]. To keep track of some of
that dependency, we consider graphs with both ‘plain’ and ‘dotted’ edges. If an edge
is plain, then the corresponding kernel Je is allowed to depend on ε (to make that
dependency clear we will also sometimes write J (ε)

e ), but the bounds (4.7) are assumed
to hold uniformly in ε ∈ (0, 1]. If an edge is dotted however, then the corresponding
kernel J (ε)

e is assumed to satisfy the bound

|DkJ (ε)
e (z)| . (|z|+ ε)−ae−|k| ,

uniformly in ε ∈ (0, 1]. There are two additional edges (in boldface) connecting to
the origin that represent a factor ϕλ(xv, 0). The origin is denoted by {0} ⊂ V , and we
denote by v?,1 and v?,2 the two vertices that connect to 0 by the edges representing test
functions. Finally, we set

V? = {0, v?,1, v?,2}, V0 = V \ {0}.
Thus, as a consequence of Proposition 4.1, the quantity in (4.6) can be represented by

3

1

3, 1 3, 1

+

2

3, 1 3, 11 1

.

With all these notations at hand, for a labelled graph G and the collection of kernels Je,
we let IGλ denote the number

IGλ =

∫
(R4)V0

∏
e∈E

Ĵe(xe− , xe+)dx, (4.10)

where 4 reflects the space-time dimension. In order to determine the right scale of the
quantity IGλ , we introduce some additional notations. For any subset V̄ ⊂ V , we let

E↑(V̄) = {e ∈ E : E ∩ V̄ = e−, re > 0};
E↓(V̄) = {e ∈ E : E ∩ V̄ = e+, re > 0};
E0(V̄) = {e ∈ E : E ∩ V = e};
E(V̄) = {e ∈ E : E ∩ V 6= φ}.

Consider a labelled graph G = (V , E) satisfying the following properties.
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Assumption 4.6. The labelled graph G = (V , E) satisfies the following properties.

1. For every edge e ∈ E , one has ae + (re ∧ 0) < 5;

2. For every subset V̄ ⊂ V of cardinality at least 3, one has∑
e∈E0(V̄)

ae < 5(|V̄| − 1);

3. For every subset V̄ ⊂ V containing 0 and of cardinality at least 2, one has∑
e∈E0(V)

ae +
∑

e∈E↑(V̄)

(ae + re − 1)−
∑

e∈E↓(V̄)

re < 5(|V̄| − 1);

4. For every non-empty subset V̄ ⊂ V \ V?, one has∑
e∈E(V̄)\E↓(V̄)

ae +
∑

e∈E↑(V̄)

−
∑

e∈E↓(V̄)

(re − 1) > 5|V|.

It turns out that this assumption on the graph G is sufficient to guarantee that the
quantity IGλ has the correct scaling behavior for small λ. This is the content of the
following theorem, proved in [HQ15].

Theorem 4.7. Let G be a graph that satisfies Assumption 4.6, and its edges represent
kernels that satisfy the definitions and bounds in (4.7), (4.8) and (4.9). If IGλ denotes
the quantity defined in (4.10), then one has

IGλ . λα (4.11)

uniformly over λ ∈ (0, 1), where α = 5|V \ V?| −
∑

e∈E ae, and the proportionality
constant depends on the graph and magnitudes of norms of the corresponding kernels.

Remark 4.8. The proportionality constant in (4.11) is a constant multiple of
∏

e ‖Ĵe‖ae,pe
for suitable values pe depending on the structure of the graph, where

‖J‖a,p := sup
|z|≤1,|`|≤p

|z|a+|`||D`J(z)|,

where we assumed that the kernels are supported in the parabolic unit ball. Since these
quantities are finite, we will simply omit them in all the bounds below.

Before we prove the bounds in Proposition 4.4, we first choose values of the
constants C (ε)

n and C ′(ε)n that appear in the statement of Theorem 4.3. With the graphic
notations, the constant C (ε)

1 is given by

C (ε)
1 =

∫ ∫
K2
ε (t, x)dxdt = Gε(0) = , C (ε)

0 = εC (ε)
1 . (4.12)
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It is easy to see that, for this definition of C (ε)
1 and the renormalised model Π̂ε, the

expression (Π̂ε
0ΨI(Ψ3))(ϕλ0 ) only contains the first two terms in (4.5), and its variance

is indeed bounded by (4.6).
For n ≥ 2, we define C (ε)

n and C ′(ε)n by

C (ε)
n = εn−2

∫
K(z)Gn

ε (z)dz = εn−2
.
.
.

.

.

.
n

, n ≥ 2 , (4.13)

C ′(ε)n = εn−
5
2

∫
K(z)Gn

ε (z)dz = ε−
1
2C (ε)

n , n ≥ 3 .

It is not hard to check that

C (ε)
1 =

C0

ε
+O(1), C0 =

∫
(P ∗ ρ)2(z)dz,

C (ε)
2 = c2| log ε|+O(1),

while for n ≥ 3, we have

C (ε)
n = Cn +O(ε), Cn =

∫
P (z)(Pρ ∗ Pρ)n(z)dz,

where Pρ = P ∗ ρ. Cn is finite for n ≥ 3 since the integrand decays like |z|−(n+3) for
large z.

4.3 First order renormalisation bounds
We are now ready to prove Theorem 4.3. In view of Proposition 4.4, it suffices to check
the bound (4.2) for all terms that appear in the right hand side of (3.14), and the bounds
(4.3) and (4.4) for relevant terms with positive homogeneities.

We first prove the bound (4.2) for terms from F (n) for n = 0, 1, 2, 3. These basis
vectors are of the form

τ = E
k
2 Ψk+3−n.

The case k = 0 has been treated in the standard Φ4
3, so we only need to consider k ≥ 1.

For the canonical model Πε, we have

Πε
zτ = ε

k
2 (Πε

zΨ)k+3−n. (4.14)

If we choose C (ε)
1 according to (4.12), then the effect of our renormalisation procedure

is precisely to turn the products in (4.14) into Wick products, so that

(Π̂ε
0τ )(ϕλ0 ) = ε

k
2

· · ·
k + 3− n

.
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The right hand side belongs to the homogeneous Wiener chaos of order (k + 3− n),
and as a consequence, we can bound its second moment by

E|(Π̂ε
0τ )(ϕλ0 )|2 . εk

k + 3− n

. εδ
3− n + δ

,

which satisfies (4.2) since

2|τ | = n− 3− 2(k + 3− n)κ < n− 3− δ ,

if δ is small enough. The bound for E k2 (Ψk+2)X follows in exactly the same way. We
have thus proved the bound (4.2) for τ = E k2 (Ψk+3−n) and τ = E k2 (Ψk+2)X .

4.4 Second order renormalisation bounds
We now turn to basis vectors coming from the terms F ′I(F), F ′I(F ′) and F ′′I(F).
All these basis elements have the form

τ = Ea(ΨkI(EbΨn)),

with the precise values of a and b depending on the element. For each k and n, the
element

(Π̂ε
0τ )(ϕλ0 )

can be decomposed into homogeneous Wiener chaoses of orders

k + n− 2`, ` = 0, 1, · · · , k ∧ n.

By examining the homogeneities, we notice that all the Eβ’s appearing in these elements
play the role of multiplication by εβ both under the canonical model and the Wick
renormalised model. Thus, for the Wick model ΠWick

0 (ϕλ0), its component in the (k +
n− 2`)-th homogeneous chaos is given by

`!

(
k
`

)(
n
`

)
· εa+b

.

.

.

.

.

.
`

...

...
...

...
n− ` k − ` . (4.15)

Note that the above expression is for the Wick renormalised model, and does not
include effect of the map M0 defined in Section 2.4. We now discuss the convergence
for these basis elements for different values of k, n and `.

Remark 4.9. (4.15) suggests that the bounds below will in general include a labelled
graph introduced above as well as a factor of a positive power of ε. With an abuse
use of notation, in what follows, we will use G to denote a labelled graph multiplied a
certain power of ε (see for example (4.16) below).
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4.4.1 k + n− 2` ≥ 2

We show below that in this case, there is no need for renormalisation beyond Wick
ordering. For simplicity, we focus on the elements from the term F ′I(F), and the
bounds for other basis vectors follow in essentially the same way. Such basis elements
have the form and homogeneity

τk,n = E
k
2
−1(ΨkI(E

n−3
2 Ψn)), |τk,n| = −

1

2
− (k + n)κ.

If k + n− 2` ≥ 2, then as a consequence of the expression (4.15), the second moment
of the component of (Π̂ε

0τk,n)(ϕλ0 ) in the (k+n−2`)-th homogeneous chaos is bounded
by the graph

G = εk+n−5

n− `

k − `

3, 1` 3, 1 `

. (4.16)

According to (4.2) and the homogeneity of |τk,n|, we need to bound the graph by

|IGλ | . εδλ−1−δ (4.17)

for some small positive δ. The assumption that there is a positive appearance of E gives
the condition

k ≥ 2, n ≥ 3, k + n ≥ 6.

In order to get the bound (4.17), we need to assign powers of ε’s to different edges of
the graph to reduce the singularity of each edge to make the whole graph integrable.
The assignments are different for various values of k, n and `.

For ` = 0, we can assign (n − 3) powers of ε to the upper edge and (k − 2 − δ)
powers to the lower edge, so we obtain the bound

G . εδ

3

2 + δ

3, 1 3, 1

, (4.18)

and the Assumption 4.6 can be easily checked. Thus, one gets the bound (4.17) if δ is
sufficiently small. For ` = 1, we still assign (n− 3) powers of ε to the upper edge and
(k − 2− δ) powers to the lower one, but this time the graph is reduced to

G . εδ

2

1 + δ

4 4

. εδ

2

1 + δ

4 + δ 4

. (4.19)

Again, one can check that the conditions in Assumption 4.6 are all satisfied for this
graph.
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We now turn to the situation when ` ≥ 2. By assigning (`− 2 + δ) powers of ε to
both the leftmost and the rightmost edge with weight `, we reduce the graph to

G . εk+n−2`−1−2δ

n− `

k − `

5− δ 5− δ

, (4.20)

and the assumption k + n− 2` ≥ 2 guarantees there is still a positive power of ε left.
If ` = n, then we assign (k − n − 1 − 3δ) powers to the lower edge, and we assign
(k − n + 1− 3δ) powers to the lower edge if ` = n− 1. The graphs we get in these
cases becomes

G . εδ 1 + 3δ

5− δ 5− δ
. εδ

1 + 3δ

(` = n), G . εδ
1

3δ

5− δ 5− δ
(` = n− 1) .

In both cases, one can easily verify Assumption 4.6 and conclude the desired bounds.
We finally turn to n− ` ≥ 2. In this case, we assign powers of ε’s in the following

way:

1. (n− `− 2) powers to the upper edge;

2. (1− 3δ) powers to the left edge;

3. and (k − `) powers to the lower edge.

The condition n − ` ≥ 2 guarantees that all the powers assigned above are positive,
and there is still a δ power of ε left. In fact, we get the reduced graph

εδ

2

4 + 2δ 5− δ

(n− ` ≥ 2) . (4.21)

Again, it is straightforward to check the Assumption (4.6) for this graph, and thus
the bound (4.17) is satisfied for small enough δ. This finishes the proof of the case
k + n− 2` ≥ 2 for elements from F ′I(F). The case for the elements from the terms
F ′I(F ′) and F ′′I(F ) can be treated in essentially the same way, and we do not repeat
the details here.

4.4.2 k = n = `

The basis elements in this category includes the following types:

E
n
2
−1(ΨnI(E

n
2
−1Ψn)), E

n−1
2 (ΨnI(E

n−3
2 Ψn)), E

n
2
−1(ΨnI(E

n−3
2 Ψn)).

The homogeneities are just below 0 for the first two elements, and just below −1
2

for
the third one. For ` = n, the 0-th chaos component of the modelled distribution on
these elements are just constants.
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We first treat the first two elements. For both of them, the contribution to the 0-th
chaos of (Π̂ε

0τ )(ϕλ0 ) is given by

n! · εn−2

.

.

.

.

.

.n

− n! · C (ε)
n = −n! · εn−2

.

.

.

.

.

.
n

, (4.22)

where the equality comes from the definition of the kernel as well as C (ε)
n in

(4.13). Since there is a strictly positive power of ε, by assigning (n− 2− δ) powers to
the dotted line in the above graph, we deduce that this object can be bounded by the
graph

G = εδ 3

2 + δ

. (4.23)

It is then clear that one has IGλ . εδλ−δ, which satisfies the bound (4.17). We now
turn to the third element E n2−1(ΨnI(E n−3

2 Ψn)). The expression of the 0-th chaos is
essentially the same as the previous two, except that one replaces εn−2 by εn−

5
2 , as well

as the renormalisation constant C (ε)
n by C ′(ε)n . Noting from (4.13) that

C ′(ε)n = ε−
1
2C (ε)

n , (4.24)

we obtain the expression of the 0-th chaos component of the element (Π̂ε
0τ )(ϕλ0 ) (up to

the sign) as

n! · εn−2
.
.
.

.

.

.n

. εδ 3

5
2

+ δ

, n ≥ 3,

where the above bound follows from assigning n− 5
2
− δ powers of ε to the kernels rep-

resented by the dotted lines. This expression is bounded by εδλ−
1
2
−δ, and corresponds

to the correct homogeneity (below −1
2
) if δ is sufficiently small. We have thus proved

the bound (4.17) for the case k = n = `.

4.4.3 k = n+ 1, ` = n

We now deal with the case k = n + 1 and ` = n, which belongs to the first order
homogeneous chaos. There are two situations in this case; the first one includes basis
vectors of the form

τ = E
n−1
2 (Ψn+1I(E

n−3
2 Ψn)), |τ | = −1

2
− (2n+ 1)κ.

The 1-st chaos component of (Π̂ε
0τ )(ϕλ0 ) is given by

(n+ 1)!
(
εn−2

.

.

.

.

.

.n

− C (ε)
n

)
= − (n+ 1)! · εn−2

.

.

.

.

.

.

n

, (4.25)
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where we have used the expression of C (ε)
n in (4.13). The second moment of this

expression is then bounded (up to a constant multiple) by the graph

G = ε2n−4

1

n n

3 3

. ε2δ
1

2 + δ 2 + δ

3 3

, (4.26)

which clearly satisfies the bound

IGλ . ε2δλ−1−2δ.

The exponent on λ will be bigger than twice the homogeneity of τ for small enough δ.
Thus, the bound (4.17) holds for the element E n−1

2 (Ψn+1I(E n−3
2 Ψn)).

The second situation for k = n+ 1 includes the basis elements

τ = E
n−1
2 (Ψn+1I(E

n
2
−1Ψn)) or τ = E

n
2 (Ψn+1I(E

n−3
2 Ψn)).

In both cases, we have |τ | = −(2n+1)κ, just below 0. Since there is no renormalisation
beyond Wick ordering on these elements, the 1-st chaos component of (Π̂ε

0τ )(ϕλ0 ) (for
both of them) is given by

(n+ 1)! · εn−
3
2

.

.

.

.

.

.n

. (4.27)

The second moment of this expression is bounded by the graph

G = ε2n−3
1

3, 1n 3, 1 n

. εδ 3δ

3, 12− δ 3, 1 2− δ

, (4.28)

which immediately gives

IGλ . εδλ−3δ.

Since the homogeneities for these two τ ’s are below 0, we thus conclude the bound
(4.17) for this case.

4.4.4 n = k + 1, ` = k

We now turn to this last case. To keep notations consistent, we switch n to n+ 1 and
write the symbols as Ea(ΨnI(EbΨn+1)) and ` = n. The symbols in this category that
need a mass renormalisation are of the form

τ = E
n
2
−1(ΨnI(E

n
2
−1Ψn+1)), |τ | = −1

2
− (2n+ 1)κ, n ≥ 3.
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The component in the 1-st Wiener chaos of the object (Π̂ε
0τ )(ϕλ0 ) is given by

(n+ 1)!
(
εn−2

.

.

.

.

.

.n

− C (ε)
n

)
− (n+ 1)! · εn−2

.

.

.

.

.

.

n

. (4.29)

The second moment of the last term above is relatively easier to to treat. In fact, it is
bounded by the graph

G = εn−2

1

n n3 3 . ε2δ
1

2 + δ 2 + δ3 3 , (4.30)

which clearly gives the desired bound IGλ . ε2δλ−1−2δ. For the two terms in the
parenthesis, by the definition of C (ε)

n , their difference can be expressed by the graph

εn−2 , (4.31)

where denotes the renormalised distribution/kernel R(KGn
ε ), which has degree

n+ 3. Thus, the second moment of this object is bounded by

ε2n−4

1

n + 3,−1 n + 3,−1 . ε2δ
1

5 + δ,−1 5 + δ,−1 . (4.32)

Again, one can verify that Assumption 4.6 is satisfied, and thus one has

IGλ . ε2δλ−1−2δ,

which vanishes at the right homogeneities if δ is sufficiently small.
We now turn to the other two terms in this category, which are of the forms

E
n
2
−1(ΨnI(E

n−1
2 Ψn)), E

n−1
2 (ΨnI(E

n
2
−1Ψn)),

and both have homogeneities just below 0. For both symbols, the components of
(Π̂ε

0τ )(ϕλ0 ) in the 1-st chaos can be expressed by

(n+ 1)! · εn−
3
2

.

.

.

.

.

.n

, (4.33)

whose second moment is bounded by the graph

G = ε2n−3

1

3, 1n 3, 1 n

. εδ

3δ

3, 12− δ 3, 1 2− δ

. (4.34)
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Again, this object vanishes at the correct homogeneity. This concludes the proof of the
bound (4.17) for all symbols with negative homogeneity that contains a strictly positive
appearance of E .

4.5 The bounds (4.3) and (4.4)

We first deal with the bound (4.3) on f̂ ε. By inspection of the formal right hand side of
the abstract equation, we need to prove (4.3) for β = j−1

2
and formal symbols τ of the

form

τ = Ψj+2−n (I(E
q−1
2 Ψq+2))a(I(E

q−1
2 Ψq+1))bXc︸ ︷︷ ︸

σ

, n ≥ 4, a+ b+ c ≤ n.

Since f̂ εz = fWick
z , and that the Wick renormalised model (ΠWick, fWick) satisfies the

relation (2.11), we have

f̂ εz (E
j−1
2

0 τ ) = −ε
j−1
2 (ΠWick

z Ψj+2−n)(z)(ΠWick
z σ)(z),

where σ is the basis vector as indicated above. Since the homogeneity of σ is strictly
positive, the expression above is 0 if any of the factors of σ has a positive power. Thus,

the only situation we need to consider for the bound on f̂ εz (E
j−1
2

0 τ ) is τ = Ψj+2−n, and
as a consequence, we get

D`f̂ εz (E
j−1
2

0 (Ψj+2−n)) = −ε
j−1
2 (D`ΠWick

0 Ψj+2−n)(z).

By the definition of ΠWick, the right hand side above can be expressed as a Hermite
polynomial, each term being proportional to

ε
j−1
2 (C (ε)

1 )k(D`Ψj+2−n−2k
ε )(z) = ε

j−1
2 (C (ε)

1 )k
∑

∑
|qi|=|`|

(Dq1Ψε)(z) · · · (Dqj+2−n−2kΨε)(z).

where we have written Ψε = Π0Ψ = K ∗ ξε for simplicity. Now, taking expectation
on the right hand side above, using generalised Hölder’s inequality, and the fact that
Cε

1 ∼ ε−1, we get

E|D`f̂ εz (E
j−1
2

0 (Ψj+2−n))| . max
k≤ 1

2
(j+2−n)

ε
j−1
2
−k

∑
∑
|qi|=|`|

∏
i

(E|DqiΨε|j+2−n−2k)
1

j+2−n−2k .

(4.35)
By equivalence of moments in Wiener chaos, each of the above factor is equivalent to
E|(DqiΨε)(z)|, which could be bounded by

E|(DqiΨε)(z)| . (E|(DqiΨε)(z)|2)
1
2 . ε−

1
2
−|qi|, (4.36)

where we have used E|(DqiK ∗ ξε)|2 . ε−1−2|qi|. Combining (4.35) and (4.36), we get

E|D`f̂ εz (E
j−1
2

0 (Ψj+2−n))| . ε
j−1
2
− j+2−n

2
−|`|,
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where we used the fact that there are totally j + 2− n− 2k factors in the product, and∑
|qi| = |`|. Since |τ | < − j+2−n

2
, this establishes the bound (4.3).

We now turn to the bound (4.4) for τ ∈ U , which includes Ψ, I(E j−1
2 Ψj+2),

I(E j−1
2 Ψj+1), 1 and X . The bound is trivial for 1 and X , and is also straightforward for

Ψ. The treatment for the rest two basis elements are similar, and we only give details
for τ = I(E j−1

2 Ψj+2). Since the test function ψ annihilates affine functions, we have

(Π̂ε
zτ )(ψλz ) = ε

j−1
2 ...

...
j + 2 . (4.37)

It then follows that we have the bound

E|(Π̂ε
zτ )(ψλz )|2 . εj−1

j + 2

3, 2 3, 2

. ε2(|τ |−ζ)

3 + 2|τ | − 2ζ

3, 2 3, 2

. (4.38)

Since 2ζ ∈ (2, 3) and 2|τ | = 1− 2(j + 2)κ, the conditions for Assumption 4.6 can be
verified straightforwardly, and thus one obtains

E|(Π̂ε
zτ )(ψλz )|2 . λ1−2|τ |+2ζε2|τ |−2|ζ| = λ2ζ+θε2|τ |−2|ζ|

for some positive θ. The bound for τ = I(E j−1
2 Ψj+1) follows in essentially the same

way.

5 Identification of the limits

We are now ready to address the main theme of the article: identifying the large scale
limits of microscopic models under various assumptions on V . As mentioned in the
introduction, we will see that the large scale limit of these near-critical models are
described by Φ4

3 as long as V is symmetric, but described by either Φ3
3 or OU processes

when asymmetry is present.
The intuitive explanation of why this is so is that 〈V 〉 is really only a 0-th order

approximation to the “real” effective potential felt by the system at large scales. Since
pitchfork bifurcations are structurally unstable, one would indeed expect higher-order
corrections to 〈V 〉 to turn this into a saddle-node bifurcation for generic non-symmetric
potentials.

The following picture illustrates our results, with the light shaded curve represent-
ing the symmetric case and the black curve representing the generic case when 〈V 〉
undergoes a pitchfork bifurcation. Here, the field Φ is represented on the horizontal axis
and the bifurcation parameter θ on the vertical axis (with positive direction pointing
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downwards).

θ ≈ −ε| log ε|+O(ε)

θ = c∗ε
2
3 +O(ε

8
9 )

The reason why, in the symmetric case, we see the bifurcation at θ ≈ −ε| log ε| rather
than θ ≈ ε is due to the additional mass renormalisation appearing in Φ4

3. In the generic
case where 〈V 〉 is asymmetric (and the quantity A defined in (1.10) is non-zero), we
can see that the asymmetry separates one local minimum from two other critical points,
and creates a saddle-node bifurcation. It turns out that this bifurcation then occurs at
θ = c∗ε

2
3 +O(ε

8
9 ) for an explicitly given constant c∗.

The weak noise regime is similar to the weakly nonlinear regime, except that the
critical θ at which one sees a pitchfork or saddle-node bifurcation is different. We will
formulate precisely and prove these results below, starting with the weakly nonlinear
regime.

5.1 Weakly nonlinear regime
Let ũ be a process on a large torus satisfying

∂tũ = ∆ũ− εV ′θ (ũ) + ξ̂,

and the re-centered and rescaled process uεα to be

uεα = ε−
α
2 (ũ(t/ε2α, x/εα)− h),

where α is the scale, and h is a small parameter depending on ε, both to be chosen later.
By setting δ = εα, it is easy to see that uδ satisfies the equation

∂tuδ = ∆uδ − δ
1
α
− 5

2V ′θ (δ
1
2uδ + h) + δ−

5
2 ξ̂(t/δ2, x/δ).

Note that the noise term is equivalent in law to ξ ∗ ρδ for some mollifier ρ rescaled at
size δ, expanding V ′θ with respect to Hermite polynomials, we get

∂tuδ = ∆uδ − δ
1
α
−1

m∑
j=0

â(h)
j (θ) · δ

j−3
2 Hj(uδ;C

(δ)
1 ) + ξδ, (5.1)

where

â(h)
j (θ) =

m∑
k=j

(
k
j

)
âk(θ) · hk−j.
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We now fix γ ∈ (1, 6
5
), η ∈ (−m+1

2m
, 1

2
), and we shall lift the above equation to the

abstract Dγ,ηε space associated to the model Mδ = MδLδ(ξδ) as in Theorem 4.3. We
also let φ(δ)

0 ∈ C
γ,η
δ such that ‖φ(δ)

0 ;φ0‖γ,η;δ → 0 for some φ0 ∈ Cη. The corresponding
abstract fixed point equation then has the form

Φ(δ) = P1+

(
Ξ−

m∑
j=4

λ(δ)
j Q≤0Ê

j−3
2 Q≤0((Φ(δ))j)−

3∑
j=0

λ(δ)
j Q≤0((Φ(δ))j)

)
+ P̂ φ(δ)

0 .

(5.2)
Comparing the right hand sides of (3.15) and (5.1), we should choose the coefficients
λ(δ)
j ’s to be

λ(δ)
j = δ

1
α
−1 · â(h)

j (θ), j ≥ 3;

λ(δ)
2 = δ

1
α
− 3

2 · â(h)
2 (θ);

λ(δ)
1 = δ

1
α
−2 · â(h)

1 (θ)− δ
2
α
−2Cδ,θ,h;

λ(δ)
0 = δ

1
α
− 5

2 · â(h)
0 (θ)− δ

2
α
− 5

2C ′δ,θ,h − 6λ(δ)
2 λ

(δ)
3 C

(δ)
2 ,

where

Cδ,θ,h =
m−1∑
n=2

(n+ 1)2n! · (â(h)
n+1(θ))2 · C (δ)

n +
m−2∑
n=3

(n+ 2)! · â(h)
n (θ) · â(h)

n+2(θ) · C (δ)
n

= 18â2
3c2| log δ|+O(1);

C ′δ,θ,h =
m−1∑
n=3

(n+ 1)! · â(h)
n (θ) · ân+1(θ)C (δ)

n = A+O(δ, θ, h),

Here, the quantity A is given by

A =
m−1∑
n=3

(n+ 1)! · ânân+1Cn, (5.3)

and Cn’s are the limits of C (δ)
n ’s (recall that they do converge to a finite limit for n ≥ 3).

It is then clear that the reconstructed solution uδ = R̂δΦ(δ) exactly solves (5.1) with
initial condition φ(δ)

0 . Here, we have used the notation O(a, b) to denote O(a ∨ b).
By Theorem 4.3, there exists a limiting model M ∈M0 such that |||Mδ;M|||δ;0 → 0.

If λ(δ)
j converges to some λj ∈ R for each j, then by Theorem 3.12, we will have

|||Φ(δ); Φ|||γ,η;δ → 0, where Φ ∈ Dγ,η associated to the model M solves the fixed point
equation

Φ = P1+

(
Ξ−

m∑
j=4

λjQ≤0Ê
j−3
2 (Q≤0(Φj))−

3∑
j=0

λjQ≤0(Φj)
)

+ P̂ φ0. (5.4)

The continuity of the reconstruction operator thus implies uδ → u = R̂Φ in Cη. In what
follows, we will choose the small parameter h as well as the scale α in a proper way
such that the coefficients λ(δ)

j ’s do converge to the desired limiting values under various
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assumptions on V . Once these limiting values λj’s are known, we can immediately
derive the limiting equation that u solves. We will also always assume that uδ solves
(5.1) on [0, T ]× T3 with initial condition φ(δ)

0 .
We now assume that 〈Vθ〉 satisfies a pitchfork bifurcation at (0, 0). Then, by the

conditions (1.8) and (1.9), the coefficients â(h)
j (θ) on the right hand side of (5.1) satisfy

â(h)
j (θ) = âj +O(θ, h), j ≥ 3;

â(h)
2 (θ) = 3â3h+O(θ, h2);

â(h)
1 (θ) = 3â3h

2 + â′1θ +O(θ2, θh, h3);

â(h)
0 (θ) = â3h

3 + â′1θh+
â′′0
2
· θ2 +O(θ3, θh2, h4),

(5.5)

As already mentioned in the introduction, whether one could obtain Φ4
3 in the large

scale limit depends on whether the quantity A defined in (5.3) is 0. In the case A = 0,
we have the following theorem.

Theorem 5.1. Let A = 0. If we set α = 1, h = 0, and

θ = θ(ε) =
18â2

3c2

â′1
· ε| log ε|+ λε+ o(ε),

then uε converges in probability in Cη([0, T ] × T3) to the Φ4
3(â3) family of solutions

indexed by λ with initial condition φ.

Proof. Since α = 1, we actually have ε = δ. From (5.5), we immediately deduce that

λ(ε)
j → âj, j ≥ 3.

Since h = 0, we have â2(θ) ∼ ε log ε, which gives λ(ε)
2 ∼ ε

1
2 log ε → 0. For λ(ε)

0 , we
have

â0(θ) ∼ ε2 log2 ε, λ(ε)
2 = O(ε

1
2 log ε),

so the only problematic term is C ′ε,θ. But note that A = 0, this term also vanishes, so
we also have λ(ε)

0 → 0.
We now turn to λ(ε)

1 . Note that both â1(θ) · ε−1 and Cε,θ diverge logarithmically, but
the prefactor of the term ε| log ε| in θ guarantees that these two divergent terms cancel
each other, so λ(ε)

1 converges to some finite quantity λ1, depending on the choice λ in
front of the ε term in θ. This implies that when restricted to basis vectors without an
appearance of E , the formal right hand side of (5.4) is identical as that of Φ4

3(â3) with a
proper linear term.

Since the action of the model M on basis vectors without an appearance of E are
precisely the same as the limiting model in Φ4

3, and its action on symbols with E yields
0, it then follows immediately that u = R̂Φ for the limiting equation does coincide
with the Φ4

3(â3) family. This completes the proof.
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Note that the leading order term of θ(ε) is negative since â′1 < 0. We now turn to
the asymmetric case where A 6= 0. We could assume without loss of generality that
A > 0. The main statement is the following.

Theorem 5.2. Let A > 0, and assume θ = ρεβ near the origin (ρ > 0).

1. If β < 2
3
, then there exists three distinct choices h(1)

ε < h(2)
ε < h(3)

ε such that
at scale α = 1+β

2
, both u(1)

δ and u(3)
δ converges in probability to u while u(2)

δ

converges in probability to v, where u and v solves the equations

∂tu = ∆u− 2|â′1|ρu+ ξ, ∂tv = ∆v + |â′1|ρv + ξ,

respectively, both with initial data φ0.

2. If β > 2
3
, then there exists a unique choice hε such that at scale α = 5

6
, the

process uδ converges in probability to the solution u of the equation

∂tu = ∆u− 3

(
â3A

2

) 1
3

u+ ξ

with initial data φ0.

3. If β = 2
3

and θ = ρε
2
3 , then there exists a critical value

ρ∗ =
3

|â′1|
·
(
â3A

2

4

) 1
3

(5.6)

such that for ρ < ρ∗ (and resp. ρ > ρ∗) there exist one (and three, resp.)
choices of h such that at scale α = 5

6
, uεα converges to one or three distinct O.U.

processes.

For ρ = ρ∗, there exist two distinct choices h(1)
ε < h(2)

ε such that for h = h(1)
ε , at

scale α = 8
9
, uεα converges to the solution u of the equation

∂tu = ∆u+ 3

(
â2

3A

2

) 1
3

:u2: + ξ,

while for h = h(2)
ε , uεα still converges to O.U. at scale α = 5

6
.

All the convergences above are in Cη([0, T ]× T3).

Remark 5.3. The situation for β = 2
3

and ρ < ρ∗ (or ρ > ρ∗) are similar to that of
β > 2

3
(or β < 2

3
), except that the coefficients in the limiting equations are different.

The other difference is that in the case ρ > ρ∗, the three choices of h gives three
different limiting O.U. processes, unlike when β < 2

3
, two of the three h’s gives the

same limiting equation.

We will give the proof of the above theorem for the most interesting case β = 2
3
,

and the proof for the other two situations are essentially the same but only simpler. We
will make use of the following elementary lemma.
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Lemma 5.4. Let A > 0. For any ρ > 0, let fρ(r) = â3r
3 + ρâ′1r − A. Let ρ∗ be the

same as in (5.6). Then, the equation fρ(r) = 0 has one, two, or three distinct real roots
for ρ < ρ∗, ρ = ρ∗ and ρ > ρ∗, respectively. In particular, for ρ = ρ∗, the two roots
r1 < r2 satisfy

r1 = −
(
A

2â3

) 1
3

, r2 >

(
A

2â3

) 1
3

.

Proof. If fρ(r) = 0 has exactly two distinct roots, then since A > 0, the smaller one
must also be a local maximum for fρ. The value of ρ∗ and that root could then be
computed directly, and all other assertions follow.

Proof of Theorem 5.2.

We only give details to the case when β = 2
3

so θ = ρε
2
3 . For ρ = ρ∗, let r1 < r2

be the two roots to the equation fρ∗(r) = 0, and set

α1 =
8

9
, θ ∼ ρ∗δ

3
4
1 , h(1)

δ = r1δ
3
8
1 = r1ε

1
3 ;

α2 =
5

6
, θ ∼ ρ∗δ

4
5
2 , h(2)

δ = r2δ
2
5
1 = r2ε

1
3 ,

For the choice of (α1, h
(1)), we deduce from the properties of â(h)

j (θ)’s that λ(δ1)
j → 0

for all j 6= 2, while

λ(δ1)
2 → −3

(
â2

3A

2

) 1
3

.

The claim then follows immediately. For the choice (α2, h
(2)), we have λ(δ2)

j → 0 for
all j 6= 1 and λ(δ2)

1 converges to some positive real number. Thus, the limiting process
in this case is O.U..

For ρ < ρ∗ and ρ > ρ∗, one should note that there exist one (or three, respectively)
distinct real solutions to the equation

fρ(r) = 0.

By setting α = 5
6

and hδ = rδ
2
5 = rε

1
3 with the roots r, one can show that all λ(δ)

j ’s
vanish in the limit except λ(δ)

1 which converges to a finite quantity. The form of the
limiting equation then follows immediately. The coefficient of the drift term can
be found by computing the roots to fρ(r) = 0, but this is not important here. This
completes the proof.

Remark 5.5. One can also adjust θ to the second order. In fact, for

θ = ρ1ε
β1 + ρ2ε

β2
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with β1 = 2
3

and ρ1 = ρ∗, it is not difficult to show that if β2 <
8
9

and ρ2 > 0, then one
still gets three OU’s, but two of them are observed at larger scales than 5

6
. If β2 ≥ 8

9
,

then one can get Φ3
3. This can be illustrated by the following figure.

5
6

5
6

5
6

8
9

5
6

8
9

5
6

β1 <
2
3

β1 >
2
3

β1 = 2
3

ρ1 > ρ∗ ρ1 < ρ∗

1+β1
2

5
6

ρ1 = ρ∗

β2 <
8
9

β2 >
8
9

2
3

+ β2
4

β2 = 8
9 β2 = 8

9

Here, each represents a stable OU process (the one with two arrows pointing to
it indicates that the two limiting OU processes have the same coefficient), each
represents an unstable OU process, and the green node represents a Φ3

3 equation. The
difference between the two green dots are that the limit represented by the one at the
bottom represents a Φ3

3 family parametrised by the coefficient ρ2, while the one on the
right has the canonical Wick product meaning. Finally, the numbers next to each node
indicates the scale α.

Note that for the branch containing the saddle-node bifurcation, the scale increases
from 1

2
to 8

9
continuously with respect to the exponents (β1, β2). One can also obtain

such a complete description for the symmetric case, but we omit the statement of the
details for conciseness. Also, the reason that the three nodes on the right of the figure
all exhibit scale 5

6
is that we only include the case when ρ1 > 0. In fact, one can also

recover the scales from 1
2

to 5
6

continuously by considering β1 <
2
3

and ρ1 < 0.
Remark 5.6. We now very briefly discuss the case when 〈Vθ〉 has a stable extreme
point or a saddle-node bifurcation near the origin. The proofs are much simpler than the
pitchfork bifurcation case, so we do not give details here. In both cases, no re-centering
is needed so h = 0.

If 〈V 〉 has a stable extreme point at the origin, then â1 6= 0. In this case, we choose
α = 1

2
(so δ = ε

1
2 ). Since we always assume â0 = 0, then as long as θ = o(ε), all λ(δ)

j ’s
vanish in the limit except λ(δ)

1 → â1. Thus, the process uδ converges in probability to
the limit

∂tu = ∆u− â1u+ ξ.

In the case of saddle-node bifurcation when â0 = â1 = 0 but â2 6= 0, the correct scale
here should be α = 2

3
. Then, as long as θ = o(δ) = o(ε

3
2 ), all λ(δ)

j → 0 except for λ(δ)
2

which converges to â2. This gives the limiting equation

∂tu = ∆u− â2 :u2: + ξ.

If θ = O(ε
3
2 ), then the resulting limit is a Φ3

3 family. Note that in the above two cases,
no further renormalisation is needed beyond the usual Wick ordering, so they can
actually be treated using the methods developed in [DPD03] and [EJS13].
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5.2 Weak noise regime
We now consider the weak noise regime. Here, we assume V : θ 7→ Vθ(·) is smooth in
C8 functions so that it can be expanded near x = 0 as in (1.15). We also assume that V
has a pitchfork bifurcation near the origin in the sense of (1.16). Let ũ be the process
satisfying

∂tũ = ∆ũ− V ′θ (ũ) + ε
1
2 ξ̂,

and define uεα to be

uεα = ε−
1+α
2 (ũ(t/ε2α, x/εα)− h).

By setting δ = εα, we see that uδ satisfies the equation

∂tuδ = ∆uδ −
6∑
j=0

a(h)
j (θ)δ

j−1
2α

+ j−5
2 ujδ − δ

− 1
2α
− 5

2Fθ,h(δ
1
2α

+ 1
2uδ) + ξδ (5.7)

for certain function Fθ,h satisfying |Fθ,h(x)| . |x|7 uniformly over |θ|, |h|, |x| < 1, and
the coefficients a(h)

j ’s satisfy

a(h)
j (θ) =

6∑
k=j

ak(θ)
(
k
j

)
· hk−j +O(h7−j), 0 ≤ j ≤ 6. (5.8)

Similar as before, we always assume (5.7) starts with initial data φ(δ)
0 ∈ C

γ,η
δ such that

‖φ(δ)
0 ;φ0‖γ,η;δ → 0 for some φ0 ∈ Cη.
We still let Mδ = MδLδ(ξδ) be the renormalised model as before, Dγ,ηδ and R̂δ be

the associated space and reconstruction operator, and consider the abstract fixed point
equation

Φ(δ) =P1+

(
Ξ−

6∑
j=4

λ(δ)
j Q≤0Ê

j−3
2 Q≤0((Φ(δ))j)−

3∑
j=0

λ(δ)
j Q≤0((Φ(δ))j)

− δ−
1
2α
− 5

2Fθ,h(δ
1
2α

+ 1
2 R̂δΦδ) · 1

)
+ P̂ φ(δ)

0 .

(5.9)

Here, we allow the parameters θ and h to depend on δ, which is indeed the case we
consider later. The following statement is an analogy to Theorem 3.12. It will be
crucial to proving the convergence of uδ to corresponding limits in various situations.

Theorem 5.7. Let Mδ ∈ Mδ and M ∈ M be as before, and let α ≤ 1. Suppose
|Fθ,h(x)| . |x|7 near the origin uniformly over |θ|, |h| < 1, and suppose for each j,
there exists λj ∈ R such that λ(δ)

j → λj . Then, there exists a short existence time T
such that there is a unique fixed point solution Φ ∈ Dγ,η to the equation

Φ = P1+

(
Ξ−

6∑
j=4

λjQ≤0Ê
j−3
2 (Q≤0(Φj))−

3∑
j=0

λjQ≤0(Φj)
)

+ P̂ φ0.

Furthermore, for every small enough δ, there also exists a fixed point solution Φ(δ) ∈
Dγ,ηδ to (5.9) up to the same time T such that |||Φ(δ),Φ|||γ,η;δ,0 → 0.
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Proof. In view of Theorem 3.12, it suffices to prove that the map (up to some fixed
time S)

Φ(δ) 7→ δ−
1
2α
− 5

2P1+(Fθ,h(δ
1
2α

+ 1
2 R̂δΦδ) · 1) (5.10)

is locally Lipschitz from Dγ,ηδ to itself with a Lipschitz constant bounded by δσ for
some positive σ, uniformly over θ and h. We need this uniformity because of the
dependence of θ and h on δ in (5.9).

To see (5.10), we first note that if Φ solves the fixed point equation (5.9), then it
necessarily has the form

Φ = Ψ + U (z),

where U takes value in a subspace of T spanned by 1 and elements with strictly positive
homogeneities. As a consequence, we have

(R̂δU )(z) = 〈U (z), 1〉 . (δ +
√
|t|)η‖U‖γ,η;δ.

It is also straightforward to show that

|(R̂Ψ)(z)| = |(K ∗ ξδ)(z)| . δ−
1
2
−κ‖Mδ‖δ.

Thus, combining the above two bounds together with the assumption of the behavior
of F around 0, we deduce that the map

Φ(δ) 7→ δ−
1
2α
− 5

2Fθ,h(δ
1
2α

+ 1
2 R̂δΦδ) · 1

is locally Lipschitz continuous from Dγ,ηδ to the space of continuous functions C with
uniform topology, and that the local Lipschitz constant is proportional to δσ for some
σ > 0 (independent of θ and h). The additional operation by P1+ (up to time S)
makes the map (5.10) locally Lipschitz from Dγ,ηδ to itself, and the Lipschitz constant
is bounded by (Sδ)σ.

The rest of the proof follows in the same line as that in Theorem 3.12.

Suppose we have now chosen λ(δ)
j ’s such that R̂δΦ(δ) exactly solves (5.7). By the

assumptions on the models and initial conditions, Theorem 5.7 guarantees that as
long as we can show that these λ(δ)

j ’s converge to the desired limiting values, then the
convergence of uδ to the limiting process with follow automatically as in the previous
section.

Inspecting the right hand side of (3.15), we see that in order for R̂δΦ(δ) to solve
(5.7), we need to set λ(δ)

j ’s in the following way:

λ(δ)
6 = a(h)

6 (θ) · δ
5
2α
−1, λ(δ)

5 = a(h)
5 (θ) · δ

2
α
−1;

λ(δ)
4 = δ

3
2α
−1(a(h)

4 (θ) + 15a(h)
6 (θ)C0 · δ

1
α );

λ(δ)
3 = δ

1
α
−1(a(h)

3 (θ) + 10a(h)
5 (θ)C0 · δ

1
α );

λ(δ)
2 = δ

1
2α
− 3

2 (a(h)
2 (θ) + 6a(h)

4 (θ)C0 · δ
1
α + 45a(h)

6 (θ)C2
0 · δ

2
α );

λ(δ)
1 = δ−2(a(h)

1 (θ) + 3a(h)
3 (θ)C0 · δ

1
α + 15a(h)

5 (θ)C2
0 · δ

2
α )− Cδ;

λ(δ)
0 = δ−

1
2α
− 5

2 (a(h)
0 (θ) + a(h)

2 (θ)C0 · δ
1
α + 3a(h)

4 (θ)C2
0 · δ

2
α + 15a(h)

6 (θ)C3
0 · δ

3
α )

− C ′δ − 6λ(δ)
2 λ

(δ)
3 C

(δ)
2 ,

(5.11)
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where the constants Cδ and C ′δ are given by

Cδ =
5∑

n=2

(n+ 1)2n! · (λ(δ)
n+1)2C (δ)

n +
4∑

n=3

(n+ 2)! · λ(δ)
n λ

(δ)
n+2C

(δ)
n ;

C ′δ = δ−
1
2

5∑
n=3

(n+ 1)! · λ(δ)
n λ

(δ)
n+1C

(δ)
n

The additional term Fθ,h · 1 in (5.9) does not affect the choice as it precisely gives the
corresponding term in (5.7) when hit with the reconstruction operator. The following
statement gives the situation where we can observe Φ4

3.

Theorem 5.8. Suppose

B = a4 +
3a′′0a

2
3

2a′21
− a′2a3

a′1
= 0. (5.12)

Then, there exists

θ(ε) = −3a3C0

a′1
· ε+

18a2
3c2

a′1
· ε2| log ε|+ λε2, h(ε) = ρε+O(ε2),

such that at scale α = 1, the solution uε to (5.7) with initial condition φ(ε)
0 converges

in probability in Cη([0, T ] × T3) to the Φ4
3(a3) family (with initial data φ0) with an

additional constant.

Proof. At α = 1, we have δ = ε. It is easy to see that if B = 0, then with the above
choice of θ, all λ(ε)

j ’s converge to a finite limit. In particular, we have

λ(ε)
j → 0 (j ≥ 4), λ(ε)

3 → a3, λ(ε)
2 → λ2 = −3a′2a3C0

a′1
+ 3a3ρ+ 6a4C0.

Since a3 6= 0, we can choose ρ such that λ2 = 0. For λ(ε)
0 , it is straightforward to show

that it converges to a finite limiting λ0 whose value depends on λ. The assertion then
follows from Theorem 5.7 and the continuity of the reconstruction operators.

Remark 5.9. It is clear from the proof that the role of h is to kill the quadratic Wick
term on the right hand side of the limiting equation. One could also set h = 0, but then
the limiting equation will involve both a quadratic Wick term and a constant.

In the generic case when B 6= 0, we need to look at a different scale to observe a
non-trivial limit. The critical value of θ at which one sees a saddle-node bifurcation
turns out to be

θ∗(ε) = ρ∗1ε+ ρ∗2ε
4
3 + ρ∗3ε

5
3 +O(ε

16
9 )

with

ρ∗1 =
3a3C0

|a′1|
, ρ∗2 =

9

(12)1/3|a′1|
(a3B

2C4
0 )

1
3 , ρ∗3 = 2BC0

(
3ρ∗2
|a′1|a3

) 1
2

. (5.13)

We then have the following theorem.
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Theorem 5.10. Suppose Vθ is smooth (in θ) in the space of C8 functions, and exhibits
pitchfork bifurcation at the origin. Suppose also B 6= 0. Let uεα be the solution to the
PDE (5.7) with initial data φ(εα)

0 , and let θ = θ(ε) be of the form

θ = ρ1ε
β1 + ρ2ε

β2 + ρ3ε
β3 + ρ4ε

β4

with 0 < β1 < β2 < β3 < β4 and ρj > 0. Let ρ∗j ’s be as in (5.13). Then, we have the
following (with all the limiting processes starting with initial data φ0):

7
9

2
3

2
3

2
3

2
3

2
3

2
3

2
3

1
2

1
2

2
3

7
9

2
3

ρ3 = ρ∗3

β4 <
16
9

β4 >
16
9

1
3

+ β4
4

β1 = 1

ρ1 = ρ∗1

β2 = 4
3

ρ2 = ρ∗2

β3 = 5
3

β4 = 16
9 β4 = 16

9

ρ3 > ρ∗3 ρ3 < ρ∗3

β3 <
5
3

β3 >
5
3

ρ2 > ρ∗2 ρ2 < ρ∗2

β2 <
4
3

β2 >
4
3

ρ1 > ρ∗1 ρ1 < ρ∗1

β1 < 1 β1 > 1
β1
2

1
2

β2
2

2
3

1
3

+ β3
4

3
4

Here, the notations are the same as in Remark 5.5: each represents a stable OU
process, each represents an unstable OU process, and each green node represents a
Φ3

3. Each black node with two arrows pointing to it indicates that the two limiting
OU processes, obtained by shifting the field to the left and to the right, have the same
coefficients. The numbers next to each dot indicates the scale α at which one observes
the corresponding limit.

Proof. The key in the proof is to show the convergence of λ(δ)
j ’s as defined in (5.11) to

the desired limiting values at various choices of α and hε. In particular, for the Φ3
3 limit,

the coefficient of the quadratic Wick term is proportional to B
1
3 . The details of the

proof are very similar to those in Theorem 5.2, and is straightforward by the expression
of the a(h)

j ’s in (5.8), so we do not repeat them here.
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Remark 5.11. If any of the ρj’s is negative, it will make θ further away from the
effective critical value θ∗ (but close to 0), and one could only see one stable OU in the
limit. In fact, by including negative ρj’s, one will fill in the jump of the scale (from
1
2

to 2
3
) on the right of the figure, and obtain a complete description (in terms of the

continuous change of the scale) as the left side of the figure.
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